Latest

SeminarPsychology

Dissociating learning-induced effects of meaning and familiarity in visual working memory for Chinese characters

Nuno Busch
University of Lausanne
Mar 29, 2023

Visual working memory (VWM) is limited in capacity, but memorizing meaningful objects may refine this limitation. However, meaningless and meaningful stimuli usually differ perceptually and an object’s association with meaning is typically already established before the actual experiment. We applied a strict control over these potential confounds by asking observers (N=45) to actively learn associations of (initially) meaningless objects. To this end, a change detection task presented Chinese characters, which were meaningless to our observers. Subsequently, half of the characters were consistently paired with pictures of animals. Then, the initial change detection task was repeated. The results revealed enhanced VWM performance after learning, in particular for meaning-associated characters (though not quite reaching the accuracy level attained by N=20 native Chinese observers). These results thus provide direct experimental evidence that the short-term retention of objects benefits from active learning of an object’s association with meaning in long-term memory.

SeminarPsychology

Computational Models of Fine-Detail and Categorical Information in Visual Working Memory: Unified or Separable Representations?

Timothy J Ricker
University of South Dakota
Nov 22, 2021

When we remember a stimulus we rarely maintain a full fidelity representation of the observed item. Our working memory instead maintains a mixture of the observed feature values and categorical/gist information. I will discuss evidence from computational models supporting a mix of categorical and fine-detail information in working memory. Having established the need for two memory formats in working memory, I will discuss whether categorical and fine-detailed information for a stimulus are represented separately or as a single unified representation. Computational models of these two potential cognitive structures make differing predictions about the pattern of responses in visual working memory recall tests. The present study required participants to remember the orientation of stimuli for later reproduction. The pattern of responses are used to test the competing representational structures and to quantify the relative amount of fine-detailed and categorical information maintained. The effects of set size, encoding time, serial order, and response order on memory precision, categorical information, and guessing rates are also explored. (This is a 60 min talk).

SeminarPsychology

The diachronic account of attentional selectivity

Alon Zivony
Birbeck University of London
Oct 21, 2021

Many models of attention assume that attentional selection takes place at a specific moment in time which demarcates the critical transition from pre-attentive to attentive processing of sensory input. We argue that this intuitively appealing account is not only inaccurate, but has led to substantial conceptual confusion (to the point where some attention researchers offer to abandon the term ‘attention’ altogether). As an alternative, we offer a “diachronic” framework that describes attentional selectivity as a process that unfolds over time. Key to this view is the concept of attentional episodes, brief periods of intense attentional amplification of sensory representations that regulate access to working memory and response-related processes. We describe how attentional episodes are linked to earlier attentional mechanisms and to recurrent processing at the neural level. We present data showing that multiple sequential events can be involuntarily encoded in working memory when they appear during the same attentional episode, whether they are relevant or not. We also discuss the costs associated with processing multiple events within a single episode. Finally, we argue that breaking down the dichotomy between pre-attentive and attentive (as well as early vs. late selection) offers new solutions to old problems in attention research that have never been resolved. It can provide a unified and conceptually coherent account of the network of cognitive and neural processes that produce the goal-directed selectivity in perceptual processing that is commonly referred to as “attention”.

SeminarPsychology

What are the consequences of directing attention within working memory?

Evie Vergauwe
University of Geneva
Oct 8, 2021

The role of attention in working memory remains controversial, but there is some agreement on the notion that the focus of attention holds mnemonic representations in a privileged state of heightened accessibility in working memory, resulting in better memory performance for items that receive focused attention during retention. Closely related, representations held in the focus of attention are often observed to be robust and protected from degradation caused by either perceptual interference (e.g., Makovski & Jiang, 2007; van Moorselaar et al., 2015) or decay (e.g., Barrouillet et al., 2007). Recent findings indicate, however, that representations held in the focus of attention are particularly vulnerable to degradation, and thus, appear to be particularly fragile rather than robust (e.g., Hitch et al., 2018; Hu et al., 2014). The present set of experiments aims at understanding the apparent paradox of information in the focus of attention having a protected vs. vulnerable status in working memory. To that end, we examined the effect of perceptual interference on memory performance for information that was held within vs. outside the focus of attention, across different ways of bringing items in the focus of attention and across different time scales.

SeminarPsychologyRecording

Removing information from working memory

Jarrod Lewis-Peacock
University of Texas at Austin
Sep 24, 2021

Holding information in working memory is essential for cognition, but removing unwanted thoughts is equally important. There is great flexibility in how we can manipulate information in working memory, but the processes and consequences of these operations are poorly understood. In this talk I will discuss our recent findings using multivariate pattern analyses of fMRI brain data to demonstrate the successful removal of information from working memory using three different strategies: suppressing a specific thought, replacing a thought with a different one, and clearing the mind of all thought. These strategies are supported by distinct brain regions and have differential consequences on the encoding of new information. I will discuss implications of these results on theories of memory and I will highlight some new directions involving the use of real-time neurofeedback to investigate causal links between brain and behavior.

SeminarPsychology

Categories, language, and visual working memory: how verbal labels change capacity limitations

Alessandra S. Souza
University of Porto, University of Zurich
Aug 11, 2021

The limited capacity of visual working memory constrains the quantity and quality of the information we can store in mind for ongoing processing. Research from our lab has demonstrated that verbal labeling/categorization of visual inputs increases its retention and fidelity in visual working memory. In this talk, I will outline the hypotheses that explain the interaction between visual and verbal inputs in working memory, leading to the boosts we observed. I will further show how manipulations of the categorical distinctiveness of the labels, the timing of their occurrence, to which item labels are applied, as well as their validity modulate the benefits one can draw from combining visual and verbal inputs to alleviate capacity limitations. Finally, I will discuss the implications of these results to our understanding of working memory and its interaction with prior knowledge.

SeminarPsychology

Memory for Latent Representations: An Account of Working Memory that Builds on Visual Knowledge for Efficient and Detailed Visual Representations

Brad Wyble
Penn State University
Jul 7, 2021

Visual knowledge obtained from our lifelong experience of the world plays a critical role in our ability to build short-term memories. We propose a mechanistic explanation of how working memory (WM) representations are built from the latent representations of visual knowledge and can then be reconstructed. The proposed model, Memory for Latent Representations (MLR), features a variational autoencoder with an architecture that corresponds broadly to the human visual system and an activation-based binding pool of neurons that binds items’ attributes to tokenized representations. The simulation results revealed that shape information for stimuli that the model was trained on, can be encoded and retrieved efficiently from latents in higher levels of the visual hierarchy. On the other hand, novel patterns that are completely outside the training set can be stored from a single exposure using only latents from early layers of the visual system. Moreover, the representation of a given stimulus can have multiple codes, representing specific visual features such as shape or color, in addition to categorical information. Finally, we validated our model by testing a series of predictions against behavioral results acquired from WM tasks. The model provides a compelling demonstration of visual knowledge yielding the formation of compact visual representation for efficient memory encoding.

SeminarPsychology

Flexible codes and loci of visual working memory

R.L. Rademaker
Ernst Strüngmann Institute in cooperation with the Max Planck Society
Jun 24, 2021

Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.

SeminarPsychology

Visual working memory representations are distorted by their use in perceptual comparisons

Keisuke Fukuda
University of Toronto Mississauga, University of Toronto
Jun 22, 2021

Visual working memory (VWM) allows us to maintain a small amount of task-relevant information in mind so that we can use them to guide our behavior. Although past studies have successfully characterized its capacity limit and representational quality during maintenance, the consequence of its usage for task-relevant behaviors has been largely unknown. In this talk, I will demonstrate that VWM representations get distorted when they are used for perceptual comparisons with new visual inputs, especially when the inputs are subjectively similar to the VWM representations. Furthermore, I will show that this similarity-induced memory bias (SIMB) occurs for both simple (e.g. , color, shape) and complex stimuli (e.g., real world objects, faces) that are perceptually encoded and retrieved from long-term memory. Given the observed versatility of the SIMB, its implication for other memory distortion phenomena (e.g., distractor-induced distortion, misinformation effect) will be discussed.

SeminarPsychology

Perception, attention, visual working memory, and decision making: The complete consort dancing together

Philip Smith
The University of Melbourne
Jun 17, 2021

Our research investigates how processes of attention, visual working memory (VWM), and decision-making combine to translate perception into action. Within this framework, the role of VWM is to form stable representations of transient stimulus events that allow them to be identified by a decision process, which we model as a diffusion process. In psychophysical tasks, we find the capacity of VWM is well defined by a sample-size model, which attributes changes in VWM precision with set-size to differences in the number evidence samples recruited to represent stimuli. In the first part of the talk, I review evidence for the sample-size model and highlight the model's strengths: It provides a parameter-free characterization of the set-size effect; it has plausible neural and cognitive interpretations; an attention-weighted version of the model accounts for the power-law of VWM, and it accounts for the selective updating of VWM in multiple-look experiments. In the second part of the talk, I provide a characterization of the theoretical relationship between two-choice and continuous-outcome decision tasks using the circular diffusion model, highlighting their common features. I describe recent work characterizing the joint distributions of decision outcomes and response times in continuous-outcome tasks using the circular diffusion model and show that the model can clearly distinguish variable-precision and simple mixture models of the evidence entering the decision process. The ability to distinguish these kinds of processes is central to current VWM studies.

working memory coverage

12 items

Seminar12
Domain spotlight

Explore how working memory research is advancing inside Psychology.

Visit domain