Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

Richard Naud

Assoc Prof

University of Ottawa

Schedule
Tuesday, September 1, 2020

Showing your local timezone

Schedule

Tuesday, September 1, 2020

5:10 PM Europe/Berlin

Watch recording
Host: SNUFA

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

SNUFA

Duration

70 minutes

Abstract

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.

Topics

apical dendritesburst-dependent plasticitydendritesfeedback pathwayshierarchical circuitshigh-frequency burstslearningmathematical analysesregenerative activityshort-term dynamicsspike timingspiking neuronssynaptic plasticity

About the Speaker

Richard Naud

Assoc Prof

University of Ottawa

Contact & Resources

Personal Website

med.uottawa.ca/cellular-molecular/people/naud-richard

@NeuroNaud

Follow on Twitter/X

twitter.com/NeuroNaud

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
January 2026
Full calendar →