World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
Professor, Department of Neurology-Neurosurgery, McGill University
Showing your local timezone
Schedule
Sunday, January 9, 2022
11:00 PM Canada/Central
Domain
NeuroscienceOriginal Event
View sourceHost
Manitoba Neuroscience Network
Duration
70 minutes
Neurons in the suprachiasmatic nucleus (SCN, the brain’s master circadian clock) display a 24 hour cycle in the their rate of action potential discharge whereby firing rates are high during the light phase and lower during the dark phase. Although it is generally agreed that this cycle of activity is a key mediator of the clock’s neural and humoral output, surprisingly little is known about how changes in clock electrical activity can mediate scheduled physiological changes at different times of day. Using opto- and chemogenetic approaches in mice we have shown that the onset of electrical activity in vasopressin releasing SCN neurons near Zeitgeber time 22 (ZT22) activates glutamatergic thirst-promoting neurons in the OVLT (organum vasculosum lamina terminalis) to promote water intake prior to sleep. This effect is mediated by activity-dependent release of vasopressin from the axon terminals of SCN neurons which acts as a neurotransmitter on OVLT neurons. More recently we found that the clock receives excitatory input from a different subset of sodium sensing neurons in the OVLT. Activation of these neurons by a systemic salt load delivered at ZT19 stimulated the electrical activity of SCN neurons which are normally silent at this time. Remarkably, this effect induced an acute reduction in non-shivering thermogenesis and body temperature, which is an adaptive response to the salt load. These findings provide information regarding the mechanisms by which the SCN promotes scheduled physiological rhythms and indicates that the clock’s output circuitry can also be recruited to mediate an unscheduled homeostatic response.
Charles BOURQUE
Dr.
Professor, Department of Neurology-Neurosurgery, McGill University
neuro
I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In o
neuro
neuro