Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr
Stanford University
Showing your local timezone
Schedule
Wednesday, May 27, 2020
2:00 AM America/New_York
Domain
NeuroscienceHost
Systems Neuroecology
Duration
70 minutes
Collective behaviour operates without central control, through interactions among individuals. The collective behaviour of ant colonies is based on simple olfactory interactions. Ant species differ enormously in the algorithms that regulate collective behaviour, reflecting diversity in ecology. I will contrast two species in very different ecological situations. Harvester ant colonies in the desert, where water is scarce but conditions are stable, regulate foraging to conserve water. Response to positive feedback from olfactory interactions depends on the risk of water loss, mediated by dopamine neurophysiology. For arboreal turtle ants in the tropical forest, life is easy but unpredictable, and a highly modular system uses negative feedback to sustain activity. In all natural systems, from ant colonies to brains, collective behaviour evolves in relation with changing conditions. Similar dynamics in environmental conditions may lead to the evolution of similar processes to regulate collective behaviour.
Deborah Gordon
Dr
Stanford University
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow