World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
Oxford University
Showing your local timezone
Schedule
Thursday, January 27, 2022
12:00 PM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
NYU Swartz
Seminar location
No geocoded details are available for this content yet.
During primate evolution, prefrontal cortex (PFC) expanded substantially relative to other cortical areas. The expansion of PFC circuits likely supported the increased cognitive abilities of humans and anthropoids to sample information about their environment, evaluate that information, plan, and decide between different courses of action. What quantities do these circuits compute as information is being sampled towards and a decision is being made? And how can they be related to anatomical specialisations within and across PFC? To address this, we recorded PFC activity during value-based decision making using single unit recording in non-human primates and magnetoencephalography in humans. At a macrocircuit level, we found that value correlates differ substantially across PFC subregions. They are heavily shaped by each subregion’s anatomical connections and by the decision-maker’s current locus of attention. At a microcircuit level, we found that the temporal evolution of value correlates can be predicted using cortical recurrent network models that temporally integrate incoming decision evidence. These models reflect the fact that PFC circuits are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. Our findings build upon recent work describing economic decision making as a process of attention-weighted evidence integration across time.
Laurence Hunt
Dr.
Oxford University
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe