Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Game Theoretical Framework Quantifying

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

A Game Theoretical Framework for Quantifying​ Causes in Neural Networks

Kayson Fakhar​

ICNS Hamburg

Schedule
Wednesday, July 6, 2022

Showing your local timezone

Schedule

Wednesday, July 6, 2022

5:30 PM Europe/Berlin

Watch recording
Host: SNUFA

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Access Seminar

Meeting Password

$Em4HF

Use this password when joining the live session

Watch the seminar

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

SNUFA

Duration

30.00 minutes

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Which nodes in a brain network causally influence one another, and how do such interactions utilize the underlying structural connectivity? One of the fundamental goals of neuroscience is to pinpoint such causal relations. Conventionally, these relationships are established by manipulating a node while tracking changes in another node. A causal role is then assigned to the first node if this intervention led to a significant change in the state of the tracked node. In this presentation, I use a series of intuitive thought experiments to demonstrate the methodological shortcomings of the current ‘causation via manipulation’ framework. Namely, a node might causally influence another node, but how much and through which mechanistic interactions? Therefore, establishing a causal relationship, however reliable, does not provide the proper causal understanding of the system, because there often exists a wide range of causal influences that require to be adequately decomposed. To do so, I introduce a game-theoretical framework called Multi-perturbation Shapley value Analysis (MSA). Then, I present our work in which we employed MSA on an Echo State Network (ESN), quantified how much its nodes were influencing each other, and compared these measures with the underlying synaptic strength. We found that: 1. Even though the network itself was sparse, every node could causally influence other nodes. In this case, a mere elucidation of causal relationships did not provide any useful information. 2. Additionally, the full knowledge of the structural connectome did not provide a complete causal picture of the system either, since nodes frequently influenced each other indirectly, that is, via other intermediate nodes. Our results show that just elucidating causal contributions in complex networks such as the brain is not sufficient to draw mechanistic conclusions. Moreover, quantifying causal interactions requires a systematic and extensive manipulation framework. The framework put forward here benefits from employing neural network models, and in turn, provides explainability for them.

Topics

Echo State Networkcausal influencescausal relationshipscausalitygame theorymechanistic interactionsneural networksstructural connectivitysynaptic strength

About the Speaker

Kayson Fakhar​

ICNS Hamburg

Contact & Resources

@Kaysonfakhar

Follow on Twitter/X

twitter.com/Kaysonfakhar

Related Seminars

Seminar64% match - Relevant

Rethinking Attention: Dynamic Prioritization

neuro

Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p

Jan 6, 2025
George Washington University
Seminar64% match - Relevant

The Cognitive Roots of the Problem of Free Will

neuro

Jan 7, 2025
Bielefeld & Amsterdam
Seminar64% match - Relevant

Memory Colloquium Lecture

neuro

Jan 8, 2025
Keio University, Tokyo
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights