World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
The Hebrew University of Jerusalem and Harvard University
Showing your local timezone
Schedule
Tuesday, January 3, 2023
11:00 PM America/New_York
Recording provided by the organiser.
Domain
Original Event
View sourceHost
van Vreeswijk TNS
Duration
70 minutes
Understanding Human ability to learn novel concepts from just a few sensory experiences is a fundamental problem in cognitive neuroscience. I will describe a recent work with Ben Sorcher and Surya Ganguli (PNAS, October 2022) in which we propose a simple, biologically plausible, and mathematically tractable neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. Discrimination between novel concepts is performed by downstream neurons implementing ‘prototype’ decision rule, in which a test example is classified according to the nearest prototype constructed from the few training examples. We show that prototype few-shot learning achieves high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations. We develop a mathematical theory that links few-shot learning to the geometric properties of the neural concept manifolds and demonstrate its agreement with our numerical simulations across different DNNs as well as different layers. Intriguingly, we observe striking mismatches between the geometry of manifolds in intermediate stages of the primate visual pathway and in trained DNNs. Finally, we show that linguistic descriptors of visual concepts can be used to discriminate images belonging to novel concepts, without any prior visual experience of these concepts (a task known as ‘zero-shot’ learning), indicated a remarkable alignment of manifold representations of concepts in visual and language modalities. I will discuss ongoing effort to extend this work to other high level cognitive tasks.
Haim Sompolinsky
The Hebrew University of Jerusalem and Harvard University
neuro
neuro
neuro