World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
University of Copenhagen
Showing your local timezone
Schedule
Tuesday, November 22, 2022
3:00 PM Europe/Lisbon
Domain
NeuroscienceOriginal Event
View sourceHost
Brain-Body Interactions
Duration
70 minutes
Gut-derived signals regulate metabolism, appetite, and behaviors important for mental health. We have performed a large-scale multidimensional screen to identify gut hormones and nutrient-sensing mechanisms in the intestine that regulate metabolism and behavior in the fruit fly Drosophila. We identified several gut hormones that affect fecundity, stress responses, metabolism, feeding, and sleep behaviors, many of which seem to act sex-specifically. We show that in response to nutrient intake, the enteroendocrine cells (EECs) of the adult Drosophila midgut release hormones that act via inter-organ relays to coordinate metabolism and feeding decisions. These findings suggest that crosstalk between the gut and other tissues regulates food choice according to metabolic needs, providing insight into how that intestine processes nutritional inputs and into the gut-derived signals that relay information regulating nutrient-specific hungers to maintain metabolic homeostasis.
Kim Rewitz
Dr.
University of Copenhagen
neuro
I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In o
neuro
neuro