World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
RCSI
Showing your local timezone
Schedule
Tuesday, April 9, 2024
6:00 PM Europe/Paris
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
Clinical and Experimental Epilepsy
Seminar location
No geocoded details are available for this content yet.
The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.
Cristina Reschke
Prof
RCSI
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe