Gene Expression
gene expression
Max Planck Institute Nijmegen
A 3-year postdoctoral position in functional neurogenetics is available within the Language & Genetics Department at the Max Planck Institute, Nijmegen, the Netherlands. Within this Department, the Imaging Genomics group performs large-scale studies to identify genes involved in left-right asymmetry of the human brain – a trait which can be altered in various neurodevelopmental disorders. A challenge then remains to understand the roles of the implicated genes in brain development and function. Mice show evidence for functional and neurophysiological asymmetries in their brains, and are therefore a promising model for investigating the functions of genes implicated through our studies in humans. Your role will be to investigate asymmetry in developing and adult mouse brain tissue using transcriptomics, immunohistochemistry and histology. This research will be carried out within a dedicated molecular biology laboratory at the Max Planck Institute, and in partnership with labs and facilities of the Radboud University Medical Center, Nijmegen. You will also be keen to learn and involve yourself in the ongoing research of the department more generally, which is focused on genetics of the neuron, brain, behaviour and cognition.
Max Planck Institute, Nijmegen
Job description A 3-year postdoctoral position in functional neurogenetics is available within the Language & Genetics Department at the Max Planck Institute, Nijmegen, the Netherlands. Within this Department, the Imaging Genomics group performs large-scale studies to identify genes involved in left-right asymmetry of the human brain – a trait which can be altered in various neurodevelopmental disorders. A challenge then remains to understand the roles of the implicated genes in brain development and function. Mice show evidence for functional and neurophysiological asymmetries in their brains, and are therefore a promising model for investigating the functions of genes implicated through our studies in humans. Your role will be to investigate asymmetry in developing and adult mouse brain tissue using transcriptomics, immunohistochemistry and histology. This research will be carried out within a dedicated molecular biology laboratory at the Max Planck Institute, and in partnership with labs and facilities of the Radboud University Medical Center, Nijmegen. You will also be keen to learn and involve yourself in the ongoing research of the department more generally, which is focused on genetics of the neuron, brain, behaviour and cognition.
Dr Cian O'Donnell
Build stochastic computational/mathematical models of gene expression in dendritic neurons to try to understand how or if synapses can store information stably. Perform data analysis on longitudinal in vivo and in vitro imaging and electron microscopy data of synapse dynamics to compare to the models.
Spatio-temporal Regulation of Gene Expression in Neurons: Insights from Imaging mRNAs Live in Action
Gene regulatory mechanisms of neocortex development and evolution
The neocortex is considered to be the seat of higher cognitive functions in humans. During its evolution, most notably in humans, the neocortex has undergone considerable expansion, which is reflected by an increase in the number of neurons. Neocortical neurons are generated during development by neural stem and progenitor cells. Epigenetic mechanisms play a pivotal role in orchestrating the behaviour of stem cells during development. We are interested in the mechanisms that regulate gene expression in neural stem cells, which have implications for our understanding of neocortex development and evolution, neural stem cell regulation and neurodevelopmental disorders.
Rett syndrome, MECP2 and therapeutic strategies
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.
Optogenetic control of Nodal signaling patterns
Embryos issue instructions to their cells in the form of patterns of signaling activity. Within these patterns, the distribution of signaling in time and space directs the fate of embryonic cells. Tools to perturb developmental signaling with high resolution in space and time can help reveal how these patterns are decoded to make appropriate fate decisions. In this talk, I will present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Our improved optoNodal reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Using this system, we demonstrate that patterned Nodal activation can initiate specification and internalization movements of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Why age-related macular degeneration is a mathematically tractable disease
Among all prevalent diseases with a central neurodegeneration, AMD can be considered the most promising in terms of prevention and early intervention, due to several factors surrounding the neural geometry of the foveal singularity. • Steep gradients of cell density, deployed in a radially symmetric fashion, can be modeled with a difference of Gaussian curves. • These steep gradients give rise to huge, spatially aligned biologic effects, summarized as the Center of Cone Resilience, Surround of Rod Vulnerability. • Widely used clinical imaging technology provides cellular and subcellular level information. • Data are now available at all timelines: clinical, lifespan, evolutionary • Snapshots are available from tissues (histology, analytic chemistry, gene expression) • A viable biogenesis model exists for drusen, the largest population-level intraocular risk factor for progression. • The biogenesis model shares molecular commonality with atherosclerotic cardiovascular disease, for which there has been decades of public health success. • Animal and cell model systems are emerging to test these ideas.
Mitochondrial diversity in the mouse and human brain
The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.
How are the epileptogenesis clocks ticking?
The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.
Activity-Dependent Gene Regulation in Health and Disease
In the last of this year’s Brain Prize webinars, Elizabeth Pollina (Washington University, USA), Eric Nestler (Icahn School of Medicine Mount Sinai, USA) and Michelle Monje (Stanford University, USA) will present their work on activity-dependent gene regulation in health and disease. Each speaker will present for 25 minutes, and the webinar will conclude with an open discussion. The webinar will be moderated by the winners of the 2023 Brain Prize, Michael Greenberg, Erin Schuman and Christine Holt.
Cellular and genetic mechanisms of cerebral cortex folding
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.
The Brain Prize winner's webinar
In 2023, Michael Greenberg (Harvard, USA), Erin Schuman (Max Planck Institute for Brain Research, Germany) and Christine Holt (University of Cambridge, UK) were awarded The Brain Prize for their pioneering work on activity-dependent gene transcription and local mRNA translation. In this webinar, all 3 Brain Prize winners will present their work. Each speaker will present for 25 minutes and the webinar will conclude with an open discussion. The webinar will be moderated by Kelsey Martin from the Simons Foundation.
Spatial and Single Cell Genomics for Next Generation Neuroscience
The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections. In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution. Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures. I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types. Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.
Sex hormone regulation of neural gene expression
Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.
Organoid-based single-cell spatiotemporal gene expression landscape of human embryonic development and hematopoiesis
Epigenomic (re)programming of the brain and behavior by ovarian hormones
Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.
Establishment and aging of the neuronal DNA methylation landscape in the hippocampus
The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.
Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development
Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).
Brain-muscle signaling coordinates exercise adaptations in Drosophila
Chronic exercise is a powerful intervention that lowers the incidence of most age-related diseases while promoting healthy metabolism in humans. However, illness, injury or age prevent many humans from consistently exercising. Thus, identification of molecular targets that can mimic the benefits of exercise would be a valuable tool to improve health outcomes of humans with neurodegenerative or mitochondrial diseases, or those with enforced sedentary lifestyles. Using a novel exercise platform for Drosophila, we have identified octopaminergic neurons as a key subset of neurons that are critical for the exercise response, and shown that periodic daily stimulation of these neurons can induce a systemic exercise response in sedentary flies. Octopamine is released into circulation where it signals through various octopamine receptors in target tissues and induces gene expression changes similar to exercise. In particular, we have identified several key molecules that respond to octopamine in skeletal muscle, including the mTOR modulator Sestrin, the PGC-1α homolog Spargel, and the FNDC5/Irisin homolog Iditarod. We are currently testing these molecules as potential therapies for multiple diseases that reduce mobility, including the PolyQ disease SCA2 and the mitochondrial disease Barth syndrome.
Linking GWAS to pharmacological treatments for psychiatric disorders
Genome-wide association studies (GWAS) have identified multiple disease-associated genetic variations across different psychiatric disorders raising the question of how these genetic variants relate to the corresponding pharmacological treatments. In this talk, I will outline our work investigating whether functional information from a range of open bioinformatics datasets such as protein interaction network (PPI), brain eQTL, and gene expression pattern across the brain can uncover the relationship between GWAS-identified genetic variation and the genes targeted by current drugs for psychiatric disorders. Focusing on four psychiatric disorders---ADHD, bipolar disorder, schizophrenia, and major depressive disorder---we assess relationships between the gene targets of drug treatments and GWAS hits and show that while incorporating information derived from functional bioinformatics data, such as the PPI network and spatial gene expression, can reveal links for bipolar disorder, the overall correspondence between treatment targets and GWAS-implicated genes in psychiatric disorders rarely exceeds null expectations. This relatively low degree of correspondence across modalities suggests that the genetic mechanisms driving the risk for psychiatric disorders may be distinct from the pathophysiological mechanisms used for targeting symptom manifestations through pharmacological treatments and that novel approaches for understanding and treating psychiatric disorders may be required.
At the nexus of genes, aging and environment: Understanding transcriptomic and epigenomic regulation in Parkinson's disease
Parkinson’s Disease (PD), the most common neurodegenerative movement disorder, is based on a complex interplay between genetic predispositions, aging processes, and environmental influences. In order to better understand the gene-environment axis in PD, we pursue a multi-omics approach to comprehensively interrogate genome-wide changes in histone modifications, DNA methylation, and hydroxymethylation, accompanied by transcriptomic profiling in cell and animal models of PD as well as large patient cohorts. Furthermore, we assess the plasticity of epigenomic modifications under influence of environmental factors using longitudinal cohorts of sporadic PD cases as well as mouse models exposed to specific environmental factors. Here, we present gene expression changes in PD mouse models in context of aging as well as environmental enrichment and high-fat diet.
Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg
Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.
A mind set in stone: fossil traces of human brain evolution
Brains do not fossilise, but as they grow and expand during fetal and infant development, they leave an imprint in the bony braincase. Such imprints of fossilised braincases provide direct evidence of brain evolution, but the underlying biological changes have remained elusive. Combining data from fossil skulls, ancient genomes, brain imaging and gene expression helps shed light on the evolutionary changes shaping the human brain. I will highlight two examples separated by more than 3 million years: the evolution of brain growth in Lucy and her kind, and differences between modern humans and Neanderthals.
MicroRNAs as targets in the epilepsies: hits, misses and complexes
MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.
Transcriptional adaptation couples past experience and future sensory responses
Animals traversing different environments encounter both stable background stimuli and novel cues, which are generally thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Sensory adaptation is a neural mechanism that filters background by minimizing responses to stable sensory stimuli, and a fundamental feature of sensory systems. Adaptation over relatively fast timescales (milliseconds to minutes) have been reported in many sensory systems. However, adaptation to persistent environmental stimuli over longer timescales (hours to days) have been largely unexplored, even though those timescales are ethologically important since animals typically stay in one environment for hours. I showed that each of the ~1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of many genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional mechanism whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.
Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain
Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.
Gut-brain signaling as a driver of behavior and gene expression in a mouse model for autism spectrum disorder
Self-organized formation of discrete grid cell modules from smooth gradients
Modular structures in myriad forms — genetic, structural, functional — are ubiquitous in the brain. While modularization may be shaped by genetic instruction or extensive learning, the mechanisms of module emergence are poorly understood. Here, we explore complementary mechanisms in the form of bottom-up dynamics that push systems spontaneously toward modularization. As a paradigmatic example of modularity in the brain, we focus on the grid cell system. Grid cells of the mammalian medial entorhinal cortex (mEC) exhibit periodic lattice-like tuning curves in their encoding of space as animals navigate the world. Nearby grid cells have identical lattice periods, but at larger separations along the long axis of mEC the period jumps in discrete steps so that the full set of periods cluster into 5-7 discrete modules. These modules endow the grid code with many striking properties such as an exponential capacity to represent space and unprecedented robustness to noise. However, the formation of discrete modules is puzzling given that biophysical properties of mEC stellate cells (including inhibitory inputs from PV interneurons, time constants of EPSPs, intrinsic resonance frequency and differences in gene expression) vary smoothly in continuous topographic gradients along the mEC. How does discreteness in grid modules arise from continuous gradients? We propose a novel mechanism involving two simple types of lateral interaction that leads a continuous network to robustly decompose into discrete functional modules. We show analytically that this mechanism is a generic multi-scale linear instability that converts smooth gradients into discrete modules via a topological “peak selection” process. Further, this model generates detailed predictions about the sequence of adjacent period ratios, and explains existing grid cell data better than existing models. Thus, we contribute a robust new principle for bottom-up module formation in biology, and show that it might be leveraged by grid cells in the brain.
Towards targeted therapies for the treatment of Dravet Syndrome
Dravet syndrome is a severe epileptic encephalopathy that begins during the first year of life and leads to severe cognitive and social interaction deficits. It is mostly caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes for the alpha-subunit of the voltage-gated sodium channel (Nav1.1) and is responsible mainly of GABAergic interneuron excitability. While different therapies based on the upregulation of the healthy allele of the gene are being developed, the dynamics of reversibility of the pathology are still unclear. In fact, whether and to which extent the pathology is reversible after symptom onset and if it is sufficient to ensure physiological levels of Scn1a during a specific critical period of time are open questions in the field and their answers are required for proper development of effective therapies. We generated a novel Scn1a conditional knock-in mouse model (Scn1aSTOP) in which the endogenous Scn1a gene is silenced by the insertion of a floxed STOP cassette in an intron of Scn1a gene; upon Cre recombinase expression, the STOP cassette is removed, and the mutant allele can be reconstituted as a functional Scn1a allele. In this model we can reactivate the expression of Scn1a exactly in the neuronal subtypes in which it is expressed and at its physiological level. Those aspects are crucial to obtain a final answer on the reversibility of DS after symptom onset. We exploited this model to demonstrate that global brain re-expression of the Scn1a gene when symptoms are already developed (P30) led to a complete rescue of both spontaneous and thermic inducible seizures and amelioration of behavioral abnormalities characteristic of this model. We also highlighted dramatic gene expression alterations associated with astrogliosis and inflammation that, accordingly, were rescued by Scn1a gene expression normalization at P30. Moreover, employing a conditional knock-out mouse model of DS we reported that ensuring physiological levels of Scn1a during the critical period of symptom appearance (until P30) is not sufficient to prevent the DS, conversely, mice start to die of SUDEP and develop spontaneous seizures. These results offer promising insights in the reversibility of DS and can help to accelerate therapeutic translation, providing important information on the timing for gene therapy delivery to Dravet patients.
Energy landscapes, order and disorder, and protein sequence coevolution: From proteins to chromosome structure
In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. A theoretical model for chromatin (the minimal chromatin model) explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data is presented. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. This model was generalized by utilizing a neural network to infer these chromatin types using epigenetic marks present at a locus, as assayed by ChIP-Seq. The ensemble of structures resulting from these simulations completely agree with HI-C data and exhibits unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories. Although this theoretical methodology was trained in one cell line, the human GM12878 lymphoblastoid cells, it has successfully predicted the structural ensembles of multiple human cell lines. Finally, going beyond Hi-C, our predicted structures are also consistent with microscopy measurements. Analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. For gene active segments, the vast majority of genes appear clustered in the linker region of the chromatin segment, allowing us to speculate possible mechanisms by which chromatin structure and dynamics may be involved in controlling gene expression. * Supported by the NSF
From genetics to neurobiology through transcriptomic data analysis
Over the past years, genetic studies have uncovered hundreds of genetic variants to be associated with complex brain disorders. While this really represents a big step forward in understanding the genetic etiology of brain disorders, the functional interpretation of these variants remains challenging. We aim to help with the functional characterization of variants through transcriptomic data analysis. For instance, we rely on brain transcriptome atlases, such as Allen Brain Atlases, to infer functional relations between genes. One example of this is the identification of signaling mechanisms of steroid receptors. Further, by integrating brain transcriptome atlases with neuropathology and neuroimaging data, we identify key genes and pathways associated with brain disorders (e.g. Parkinson's disease). With technological advances, we can now profile gene expression in single-cells at large scale. These developments have presented significant computational developments. Our lab focuses on developing scalable methods to identify cells in single-cell data through interactive visualization, scalable clustering, classification, and interpretable trajectory modelling. We also work on methods to integrate single-cell data across studies and technologies.
Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dynamic species- and region-specific differences
Novel Tools for Spatial and Temporal Genomics
The precise spatial localization of molecular signals within tissues richly informs the mechanisms of tissue formation and function. Here, we’ll introduce Slide-seq, a technology which enables transcriptome-wide measurements with near-single cell spatial resolution. We’ll describe recent experimental and computational advances to enable Slide-seq in biological contexts in biological contexts where high detection sensitivity is important. More broadly, we’ll discuss the promise and challenges of spatial transcriptomics for tissue genomics. Lastly, we’ll touch upon novel molecular recording technologies, which allows recording of the absolute time dynamics of gene expression in live systems into DNA sequences.
Is there universality in biology?
It is sometimes said that there are two reasons why physics is so successful as a science. One is that it deals with very simple problems. The other is that it attempts to account only for universal aspects of systems at a desired level of description, with lower level phenomena subsumed into a small number of adjustable parameters. It is a widespread belief that this approach seems unlikely to be useful in biology, which is intimidatingly complex, where “everything has an exception”, and where there are a huge number of undetermined parameters. I will try to argue, nonetheless, that there are important, experimentally-testable aspects of biology that exhibit universality, and should be amenable to being tackled from a physics perspective. My suggestion is that this can lead to useful new insights into the existence and universal characteristics of living systems. I will try to justify this point of view by contrasting the goals and practices of the field of condensed matter physics with materials science, and then by extension, the goals and practices of the newly emerging field of “Physics of Living Systems” with biology. Specific biological examples that I will discuss include the following: Universal patterns of gene expression in cell biology Universal scaling laws in ecosystems, including the species-area law, Kleiber’s law, Paradox of the Plankton Universality of the genetic code Universality of thermodynamic utilization in microbial communities Universal scaling laws in the tree of life The question of what can be learned from studying universal phenomena in biology will also be discussed. Universal phenomena, by their very nature, shed little light on detailed microscopic levels of description. Yet there is no point in seeking idiosyncratic mechanistic explanations for phenomena whose explanation is found in rather general principles, such as the central limit theorem, that every microscopic mechanism is constrained to obey. Thus, physical perspectives may be better suited to answering certain questions such as universality than traditional biological perspectives. Concomitantly, it must be recognized that the identification and understanding of universal phenomena may not be a good answer to questions that have traditionally occupied biological scientists. Lastly, I plan to talk about what is perhaps the central question of universality in biology: why does the phenomenon of life occur at all? Is it an inevitable consequence of the laws of physics or some special geochemical accident? What methodology could even begin to answer this question? I will try to explain why traditional approaches to biology do not aim to answer this question, by comparing with our understanding of superconductivity as a physical phenomenon, and with the theory of universal computation. References Nigel Goldenfeld, Tommaso Biancalani, Farshid Jafarpour. Universal biology and the statistical mechanics of early life. Phil. Trans. R. Soc. A 375, 20160341 (14 pages) (2017). Nigel Goldenfeld and Carl R. Woese. Life is Physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Cond. Matt. Phys. 2, 375-399 (2011).
Circadian/Multidien Molecular Oscillations and Rhythmicity of Epilepsy
The occurrence of seizures at specific times of the day has been consistently observed for centuries in individuals with epilepsy. Electrophysiological recordings provide evidence that seizures have a higher probability of occurring at a given time during the night and day cycle in individuals with epilepsy – the seizure rush hour. Which mechanisms underly such circadian rhythmicity of seizures? Why don’t they occur every day at the same time? Which mechanisms may underly their occurrence outside the rush hour? I shall present a hypothesis: MORE - Molecular Oscillations and Rhythmicity of Epilepsy, a conceptual framework to study and understand the mechanisms underlying the circadian rhythmicity of seizures and their probabilistic nature. The core of the hypothesis is the existence of circa 24h oscillations of gene and protein expression throughout the body in different cells and organs. The orchestrated molecular oscillations control the rhythmicity of numerous body events, such as feeding and sleep. The concept developed here is that molecular oscillations may favor seizure genesis at preferred times, generating the condition for a seizure rush hour. However, the condition is not sufficient, as other factors are necessary for a seizure to occur. Studying these molecular oscillations may help us understand seizure genesis mechanisms and find new therapeutic targets and predictive biomarkers. The MORE hypothesis can be generalized to comorbidities and the slower multidien (week/month period) rhythmicity of seizures.
Finding Needles in Genomic Haystacks
The ability to read the DNA sequences of different organisms has transformed biology in much the same way that the telescope transformed astronomy. And yet, much of the sequence found in these genomes is as enigmatic as the Rosetta Stone was to early Egyptologists. With the aim of making steps to crack the genomic Rosetta Stone, I will describe unexpected ways of using the physics of information transfer first developed at Bell Labs for thinking about telephone communications to try to decipher the meaning of the regulatory features of genomes. Specifically, I will show how we have been able to explore genes for which we know nothing about how they are regulated by using a combination of mutagenesis, deep sequencing and the physics of information, with the result that we now have falsifiable hypotheses about how those genes work. With those results in hand, I will show how simple tools from statistical physics can be used to predict the level of expression of different genes, followed by a description of precision measurements used to test those predictions. Bringing the two threads of the talk together, I will think about next steps in reading and writing genomes at will.
CRISPR-based functional genomics in iPSC-based models of brain disease
Human genes associated with brain-related diseases are being discovered at an accelerating pace. A major challenge is an identification of the mechanisms through which these genes act, and of potential therapeutic strategies. To elucidate such mechanisms in human cells, we established a CRISPR-based platform for genetic screening in human iPSC-derived neurons, astrocytes and microglia. Our approach relies on CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), in which a catalytically dead version of the bacterial Cas9 protein recruits transcriptional repressors or activators, respectively, to endogenous genes to control their expression, as directed by a small guide RNA (sgRNA). Complex libraries of sgRNAs enable us to conduct genome-wide or focused loss-of-function and gain-of-function screens. Such screens uncover molecular players for phenotypes based on survival, stress resistance, fluorescent phenotypes, high-content imaging and single-cell RNA-Seq. To uncover disease mechanisms and therapeutic targets, we are conducting genetic modifier screens for disease-relevant cellular phenotypes in patient-derived neurons and glia with familial mutations and isogenic controls. In a genome-wide screen, we have uncovered genes that modulate the formation of disease-associated aggregates of tau in neurons with a tauopathy-linked mutation (MAPT V337M). CRISPRi/a can also be used to model and functionally evaluate disease-associated changes in gene expression, such as those caused by eQTLs, haploinsufficiency, or disease states of brain cells. We will discuss an application to Alzheimer’s Disease-associated genes in microglia.
Measuring transcription at a single gene copy reveals hidden drivers of bacterial individuality
Single-cell measurements of mRNA copy numbers inform our understanding of stochastic gene expression, but these measurements coarse-grain over the individual copies of the gene, where transcription and its regulation take place stochastically. We recently combined single-molecule quantification of mRNA and gene loci to measure the transcriptional activity of an endogenous gene in individual Escherichia coli bacteria. When interpreted using a theoretical model for mRNA dynamics, the single-cell data allowed us to obtain the probabilistic rates of promoter switching, transcription initiation and elongation, mRNA release and degradation. Unexpectedly, we found that gene activity can be strongly coupled to the transcriptional state of another copy of the same gene present in the cell, and to the event of gene replication during the bacterial cell cycle. These gene-copy and cell-cycle correlations demonstrate the limits of mapping whole-cell mRNA numbers to the underlying stochastic gene activity and highlight the contribution of previously hidden variables to the observed population heterogeneity.
Potential involvement and target identification of HuR/ELAVL1 in age-related ocular pathologies – Back to the origin
In the last decades, the post-transcriptional control of gene expression has become an area of intense investigation, delineating a complex scenario where several factors (e.g. RNA-binding proteins, coding and non-coding RNAs) orchestrate the fate of a given transcript. An intriguing hypothesis suggests that loss of RNA homeostasis is a central feature of many pathological states, including eye diseases. Since the elav (embryonic lethal, abnormal visual system) gene discovery in the Drosophila melanogaster, the mammalian ELAV-like family has confirmed its leading role in controlling the RNA metabolism (from splicing to translation) of genes with a key function in many physio-pathological contexts. Some relevant findings suggest the involvement of the HuR/ELAV-like1 member and its potential as a therapeutic target in age-related ocular pathologies.
Toward a Comprehensive Classification of Mouse Retinal Ganglion Cells: Morphology, Function, Gene Expression, and Central Projections
I will introduce a web portal for the retinal neuroscience community to explore the catalog of mouse retinal ganglion cell (RGC) types, including data on light responses, correspondences with morphological types in EyeWire, and gene expression data from single-cell transcriptomics. Our current classification includes 43 types, accounting for 90% of the cells in EyeWire. Many of these cell types have new stories to tell, and I will cover two of them that represent opposite ends of the spectrum of levels of analysis in my lab. First, I will introduce the “Bursty Suppressed-by-Contrast” RGC and show how its intrinsic properties rather than its synaptic inputs differentiate its function from that of a different well-known RGC type. Second, I will present the histogram of cell types that project to the Olivary Pretectal Nucleus, focusing on the recently discovered M6 ipRGC.
The thalamus that speaks to the cortex: spontaneous activity in the developing brain
Our research team runs several related projects studying the cellular and molecular mechanisms involved in the development of axonal connections in the brain. In particular, our aim is to uncover the principles underlying thalamocortical axonal wiring, maintenance and ultimately the rewiring of connections, through an integrated and innovative experimental programme. The development of the thalamocortical wiring requires a precise topographical sorting of its connections. Each thalamic nucleus receives specific sensory information from the environment and projects topographically to its corresponding cortical. A second level of organization is achieved within each area, where thalamocortical connections display an intra-areal topographical organization, allowing the generation of accurate spatial representations within each cortical area. Therefore, the level of organization and specificity of the thalamocortical projections is much more complex than other projection systems in the CNS. The central hypothesis of our laboratory is that thalamocortical input influences and maintains the functional architecture of the sensory cortices. We also believe that rewiring and plasticity events can be triggered by activity-dependent mechanisms in the thalamus. Three major questions are been focused in the laboratory: i) the role of spontaneous patterns of activity in thalamocortical wiring and cortical development, ii) the role of the thalamus and its connectivity in the neuroplastic cortical changes following sensory deprivation, and iii) reprogramming thalamic cells for sensory circuit restoration. Within these projects we are using several experimental programmes, these include: optical imaging, manipulation of gene expression in vivo, cell and molecular biology, biochemistry, cell culture, sensory deprivation paradigms and electrophysiology. The results derived from our investigations will contribute to our understating of how reprogramming of cortical wiring takes place following brain damage and how cortical structure is maintained.
Alteration of myelin gene expression in a mouse model for Glut1 Deficiency Syndrome
FENS Forum 2024
Alterations in activity-regulated inhibitor of death gene expression in spinocerebellar ataxia type 2 and type 3
FENS Forum 2024
Blunted TLR3-induced inflammatory gene expression in the prefrontal cortex of the valproic acid model of autism, an effect unaltered by increasing endocannabinoid tone
FENS Forum 2024
Deficiency of the histone lysine demethylase KDM5B alters histone methylation and gene expression in the developing brain and causes autism-like phenotypes via increased NMDAR signalling
FENS Forum 2024
Effect of RNA m6A methyltransferase activation on anxiety- and depression-related behaviours, monoamine neurochemistry, and striatal gene expression in the rat
FENS Forum 2024
Establishment of animal cell lines to detect circadian rhythm gene expression via CRISPR-Cas9
FENS Forum 2024
Exposure to a high-fat diet during adolescence affects the mu opioid receptor gene expression in the lateral septum of adult rats
FENS Forum 2024
Gene expression alterations in the hippocampus of a murine model of Prader-Willi syndrome
FENS Forum 2024
Gene expressions related to hippocampal ripples
FENS Forum 2024
Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression
FENS Forum 2024
Hypothalamic gene expression following early life and acute stress exposure in adulthood: Focus on sex differences
FENS Forum 2024
Ketogenic diet buffers brain gene expression and ethanol consumption induced by vicarious social defeat exposure in female mice
FENS Forum 2024
Melatonin rescues the age-induced alteration in rhythmic clock gene and clock-controlled gene expression in rat hippocampus
FENS Forum 2024
Sex and age modulate gene expression of epigenetic and estradiol signaling in the mouse trigeminal ganglion
FENS Forum 2024
Neuroendocrine dysregulation in microglial cells during the progression of Alzheimer's disease: Preliminary insights from gene expression analysis
FENS Forum 2024
Novel item-place learning triggers somatic gene expression in the dorsal hippocampus and anterior retrosplenial cortex
FENS Forum 2024
Prenatal hypoxia, maternal stress, and the impact on CHRNA7 gene expression: Linking to nicotine addiction in adult offspring
FENS Forum 2024
Re-analysing the Allen Gene Expression ISH dataset with deep learning
FENS Forum 2024
Reproduction, gene expression, and locomotor activity in Syrian hamsters: Impact of different Hypericum perforatum L. doses
FENS Forum 2024
SATB2-dependent effects on gene expression and chromatin 3D structure in human NGN2 neurons
FENS Forum 2024
Synaptic gene expression changes in frontotemporal dementia due to the MAPT 10+16 mutation
FENS Forum 2024
Unraveling the complexity of stress and reward processing: Nucleus incertus responses to noxious stimulus – electrophysiological, anatomical and immediate early gene expression studies
FENS Forum 2024
Unravelling the role of protocadherin-19 (PCDH19) in gene expression regulation
FENS Forum 2024