World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
MIT
Showing your local timezone
Schedule
Sunday, October 24, 2021
9:00 AM America/Los_Angeles
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
SLAAM by UC Merced
Seminar location
No geocoded details are available for this content yet.
Tissue folding is a ubiquitous shape change event during development whereby a cell sheet bends into a curved 3D structure. This mechanical process is remarkably robust, and the correct final form is almost always achieved despite internal fluctuations and external perturbations inherent in living systems. While many genetic and molecular strategies that lead to robust development have been established, much less is known about how mechanical patterns and movements are ensured at the population level. I will describe how quantitative imaging, physical modeling and concepts from network science can uncover collective interactions that govern tissue patterning and shape change. Actin and myosin are two important cytoskeletal proteins involved in the force generation and movement of cells. Both parts of this talk will be about the spontaneous organization of actomyosin networks and their role in collective tissue dynamics. First, I will present how out-of-plane curvature can trigger the global alignment of actin fibers and a novel transition from collective to individual cell migration in culture. I will then describe how tissue-scale cytoskeletal patterns can guide tissue folding in the early fruit fly embryo. I will show that actin and myosin organize into a network that spans a domain of the embryo that will fold. Redundancy in this supracellular network encodes the tissue’s intrinsic robustness to mechanical and molecular perturbations during folding.
Hannah Yevick
Dr
MIT
Contact & Resources
open source
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F
neuro
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe