← Back

Cytoskeletal Networks

Topic spotlight
TopicWorld Wide

cytoskeletal networks

Discover seminars, jobs, and research tagged with cytoskeletal networks across World Wide.
2 curated items2 Seminars
Updated over 3 years ago
2 items · cytoskeletal networks
2 results
SeminarPhysics of LifeRecording

Active mechanics of sea star oocytes

Peter Foster
Brandeis University
Jul 17, 2022

The cytoskeleton has the remarkable ability to self-organize into active materials which underlie diverse cellular processes ranging from motility to cell division. Actomyosin is a canonical example of an active material, which generates cellularscale contractility in part through the forces exerted by myosin motors on actin filaments. While the molecular players underlying actomyosin contractility have been well characterized, how cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions is not well understood. In this talk, I’ll present work done in collaboration with Sebastian Fürthauer and Nikta Fakhri addressing this question in vivo using the meiotic surface contraction wave seen in oocytes of the bat star Patiria miniata as a model system. By perturbing actin polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical actin density peaked near the wild type density. To understand this, we develop an active fluid model coarse-grained from filament-scale interactions and find quantitative agreement with the measured data. The model makes further predictions, including the surprising prediction that deformation rate decreases with increasing motor concentration. We test these predictions through protein overexpression and find quantitative agreement. Taken together, this work is an important step for bridging the molecular and cellular length scales for cytoskeletal networks in vivo.

SeminarPhysics of LifeRecording

Making connections: how epithelial tissues guarantee folding

Hannah Yevick
MIT
Oct 24, 2021

Tissue folding is a ubiquitous shape change event during development whereby a cell sheet bends into a curved 3D structure. This mechanical process is remarkably robust, and the correct final form is almost always achieved despite internal fluctuations and external perturbations inherent in living systems. While many genetic and molecular strategies that lead to robust development have been established, much less is known about how mechanical patterns and movements are ensured at the population level. I will describe how quantitative imaging, physical modeling and concepts from network science can uncover collective interactions that govern tissue patterning and shape change. Actin and myosin are two important cytoskeletal proteins involved in the force generation and movement of cells. Both parts of this talk will be about the spontaneous organization of actomyosin networks and their role in collective tissue dynamics. First, I will present how out-of-plane curvature can trigger the global alignment of actin fibers and a novel transition from collective to individual cell migration in culture. I will then describe how tissue-scale cytoskeletal patterns can guide tissue folding in the early fruit fly embryo. I will show that actin and myosin organize into a network that spans a domain of the embryo that will fold. Redundancy in this supracellular network encodes the tissue’s intrinsic robustness to mechanical and molecular perturbations during folding.