Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Modulation C Elegans Behavior

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Modulation of C. elegans behavior by gut microbes

Michael O'Donnell

Dr.

Yale University

Schedule
Sunday, October 25, 2020

Showing your local timezone

Schedule

Sunday, October 25, 2020

3:00 PM Europe/Lisbon

Watch recording
Host: Brain-Body Interactions

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

Brain-Body Interactions

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

We are interested in understanding how microbes impact the behavior of host animals. Animal nervous systems likely evolved in environments richly surrounded by microbes, yet the impact of bacteria on nervous system function has been relatively under-studied. A challenge has been to identify systems in which both host and microbe are amenable to genetic manipulation, and which enable high-throughput behavioral screening in response to defined and naturalistic conditions. To accomplish these goals, we use an animal host — the roundworm C. elegans, which feeds on bacteria — in combination with its natural gut microbiome to identify inter-organismal signals driving host-microbe interactions and decision-making. C. elegans has some of the most extensive molecular, neurobiological and genetic tools of any multicellular eukaryote, and, coupled with the ease of gnotobiotic culture in these worms, represents a highly attractive system in which to study microbial influence on host behavior. Using this system, we discovered that commensal bacterial metabolites directly modulate nervous system function of their host. Beneficial gut microbes of the genus Providencia produce the neuromodulator tyramine in the C. elegans intestine. Using a combination of behavioral analysis, neurogenetics, metabolomics and bacterial genetics we established that bacterially produced tyramine is converted to octopamine in C. elegans, which acts directly in sensory neurons to reduce odor aversion and increase sensory preference for Providencia. We think that this type of sensory modulation may increase association of C. elegans with these microbes, increasing availability of this nutrient-rich food source for the worm and its progeny, while facilitating dispersal of the bacteria.

Topics

C elegansbehaviourbehavioural analysisgut microbiomeinter-organismal signalsmetabolomicsmicrobiomeneurobiologyneurogeneticsoctopamineprovidenciasensory neuronstyramine

About the Speaker

Michael O'Donnell

Dr.

Yale University

Contact & Resources

Personal Website

mcdb.yale.edu/people/michael-odonnell

@_MikeOD_

Follow on Twitter/X

twitter.com/_MikeOD_

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights