Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Multi Layer Network Learning

Back to SeminarsBack
SeminarPast EventNeuroscience

Multi-layer network learning in an electric fish

Larry Abbott

Prof

Columbia University

Schedule
Wednesday, May 6, 2020

Showing your local timezone

Schedule

Wednesday, May 6, 2020

3:59 PM America/Los_Angeles

Host: U Oregon Neuro

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Access Seminar

Event Information

Format

Past Seminar

Recording

Not available

Host

U Oregon Neuro

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

The electrosensory lobe (ELL) in mormyrid electric fish is a cerebellar-like structure that cancels the sensory effects of self-generated electric fields, allowing prey to be detected. Like the cerebellum, the ELL involves two stages of processing, analogous to the Purkinje cells and cells of the deep cerebellar nuclei. Through the work of Curtis Bell and others, a model was previously developed to describe the output stage of the ELL, but the role of the Purkinje-cell analogs, the medium ganglion (MG) cells, in the circuit had remained mysterious. I will present a complete, multi-layer circuit description of the ELL, developed in collaboration with Nate Sawtell and Salomon Muller, that reveals a novel role for the MG cells. The resulting model provides an example of how a biological system solves well-known problems associated with learning in multi-layer networks, and it reveals that ELL circuitry is organization on the basis of learning rather than by the response properties of neurons.

Topics

balancecerebellar-like structureelectrosensory lobeinvertebrateslearningmedium ganglion cellsmormyrid electric fishmulti-layer networkneural circuitrypurkinje cellssensory processingtheory

About the Speaker

Larry Abbott

Prof

Columbia University

Contact & Resources

Personal Website

neuroscience.columbia.edu/profile/larryabbott

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights