Purkinje Cells
purkinje cells
A Flexible Platform for Monitoring Cerebellum-Dependent Sensory Associative Learning
Climbing fiber inputs to Purkinje cells provide instructive signals critical for cerebellum-dependent associative learning. Studying these signals in head-fixed mice facilitates the use of imaging, electrophysiological, and optogenetic methods. Here, a low-cost behavioral platform (~$1000) was developed that allows tracking of associative learning in head-fixed mice that locomote freely on a running wheel. The platform incorporates two common associative learning paradigms: eyeblink conditioning and delayed tactile startle conditioning. Behavior is tracked using a camera and the wheel movement by a detector. We describe the components and setup and provide a detailed protocol for training and data analysis. This platform allows the incorporation of optogenetic stimulation and fluorescence imaging. The design allows a single host computer to control multiple platforms for training multiple animals simultaneously.
Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2
Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.
Population coding in the cerebellum: a machine learning perspective
The cerebellum resembles a feedforward, three-layer network of neurons in which the “hidden layer” consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.
Synchrony and Synaptic Signaling in Cerebellar Circuits
The cerebellum permits a wide range of behaviors that involve sensorimotor integration. We have been investigating how specific cellular and synaptic specializations of cerebellar neurons measured in vitro, give rise to circuit activity in vivo. We have investigated these issues by studying Purkinje neurons as well as the large neurons of the mouse cerebellar nuclei, which form the major excitatory premotor projection from the cerebellum. Large CbN cells have ion channels that favor spontaneous action potential firing and GABAA receptors that generate ultra-fast inhibitory synaptic currents, raising the possibility that these biophysical attributes may permit CbN cells to respond differently to the degree of temporal coherence of their Purkinje cell inputs. In vivo, self-initiated motor programs associated with whisking correlates with asynchronous changes in Purkinje cell simple spiking that are asynchronous across the population. The resulting inhibition converges with mossy fiber excitation to yield little change in CbN cell firing, such that cerebellar output is low or cancelled. In contrast, externally applied sensory stimuli elicits a transient, synchronous inhibition of Purkinje cell simple spiking. During the resulting strong disinhibition of CbN cells, sensory-induced excitation from mossy fibers effectively drives cerebellar outputs that increase the magnitude of reflexive whisking. Purkinje cell synchrony, therefore, may be a key variable contributing to the “positive effort” hypothesized by David Marr in 1969 to be necessary for cerebellar control of movement.
Generalizing theories of cerebellum-like learning
Since the theories of Marr, Ito, and Albus, the cerebellum has provided an attractive well-characterized model system to investigate biological mechanisms of learning. In recent years, theories have been developed that provide a normative account for many features of the anatomy and function of cerebellar cortex and cerebellum-like systems, including the distribution of parallel fiber-Purkinje cell synaptic weights, the expansion in neuron number of the granule cell layer and their synaptic in-degree, and sparse coding by granule cells. Typically, these theories focus on the learning of random mappings between uncorrelated inputs and binary outputs, an assumption that may be reasonable for certain forms of associative conditioning but is also quite far from accounting for the important role the cerebellum plays in the control of smooth movements. I will discuss in-progress work with Marjorie Xie, Samuel Muscinelli, and Kameron Decker Harris generalizing these learning theories to correlated inputs and general classes of smooth input-output mappings. Our studies build on earlier work in theoretical neuroscience as well as recent advances in the kernel theory of wide neural networks. They illuminate the role of pre-expansion structures in processing input stimuli and the significance of sparse granule cell activity. If there is time, I will also discuss preliminary work with Jack Lindsey extending these theories beyond cerebellum-like structures to recurrent networks.
On the purpose and origin of spontaneous neural activity
Spontaneous firing, observed in many neurons, is often attributed to ion channel or network level noise. Cortical cells during slow wave sleep exhibit transitions between so called Up and Down states. In this sleep state, with limited sensory stimuli, neurons fire in the Up state. Spontaneous firing is also observed in slices of cholinergic interneurons, cerebellar Purkinje cells and even brainstem inspiratory neurons. In such in vitro preparations, where the functional relevance is long lost, neurons continue to display a rich repertoire of firing properties. It is perplexing that these neurons, instead of saving their energy during information downtime and functional irrelevance, are eager to fire. We propose that spontaneous firing is not a chance event but instead, a vital activity for the well-being of a neuron. We postulate that neurons, in anticipation of synaptic inputs, keep their ATP levels at maximum. As recovery from inputs requires most of the energy resources, neurons are ATP surplus and ADP scarce during synaptic quiescence. With ADP as the rate-limiting step, ATP production stalls in the mitochondria when ADP is low. This leads to toxic Reactive Oxygen Species (ROS) formation, which are known to disrupt many cellular processes. We hypothesize that spontaneous firing occurs at these conditions - as a release valve to spend energy and to restore ATP production, shielding the neuron against ROS. By linking a mitochondrial metabolism model to a conductance-based neuron model, we show that spontaneous firing depends on baseline ATP usage and on ATP-cost-per-spike. From our model, emerges a mitochondrial mediated homeostatic mechanism that provides a recipe for different firing patterns. Our findings, though mostly affecting intracellular dynamics, may have large knock-on effects on the nature of neural coding. Hitherto it has been thought that the neural code is optimised for energy minimisation, but this may be true only when neurons do not experience synaptic quiescence.
Multi-layer network learning in an electric fish
The electrosensory lobe (ELL) in mormyrid electric fish is a cerebellar-like structure that cancels the sensory effects of self-generated electric fields, allowing prey to be detected. Like the cerebellum, the ELL involves two stages of processing, analogous to the Purkinje cells and cells of the deep cerebellar nuclei. Through the work of Curtis Bell and others, a model was previously developed to describe the output stage of the ELL, but the role of the Purkinje-cell analogs, the medium ganglion (MG) cells, in the circuit had remained mysterious. I will present a complete, multi-layer circuit description of the ELL, developed in collaboration with Nate Sawtell and Salomon Muller, that reveals a novel role for the MG cells. The resulting model provides an example of how a biological system solves well-known problems associated with learning in multi-layer networks, and it reveals that ELL circuitry is organization on the basis of learning rather than by the response properties of neurons.
Faithful encoding of interlimb coordination by individual Purkinje cells during locomotion
COSYNE 2022
Activity-dependent regulation of clustered gamma protocadherins (c-γPCDH) expression during circuit assembly in Purkinje cells
FENS Forum 2024
Cerebellar Purkinje cells control movement and their degeneration causes specific gaiting defects
FENS Forum 2024
Molecular identity of Purkinje cells dictates their activity during a learned complex movement
FENS Forum 2024
Non-linear and mixed encoding of body movements by individual Purkinje cells
FENS Forum 2024
Two-dimensional adaptive control of saccades by the cerebellar Purkinje cells
FENS Forum 2024
Unveiling fusion between bone marrow-derived cells and Purkinje cells: Patch-Seq analysis in a mouse model of multiple sclerosis
FENS Forum 2024