Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Joseph B. Martin Professor of Basic Research in the Field of Neurobiology, Harvard Medical School. Investigator, Howard Hughes Medical Institute.
Showing your local timezone
Schedule
Wednesday, May 26, 2021
4:00 PM Europe/Zurich
Domain
NeuroscienceHost
NeuroLeman Network
Duration
70 minutes
The regions of the insect brain devoted to spatial navigation are beautifully orderly, with a remarkably precise pattern of synaptic connections. Thus, we can learn much about the neural mechanisms of spatial navigation by targeting identifiable neurons in these networks for in vivo patch clamp recording and calcium imaging. Our lab has recently discovered that the "compass system" in the Drosophila brain is anchored to not only visual landmarks, but also the prevailing wind direction. Moreover, we found that the compass system can re-learn the relationship between these external sensory cues and internal self-motion cues, via rapid associative synaptic plasticity. Postsynaptic to compass neurons, we found neurons that conjunctively encode heading direction and body-centric translational velocity. We then showed how this representation of travel velocity is transformed from body- to world-centric coordinates at the subsequent layer of the network, two synapses downstream from compass neurons. By integrating this world-centric vector-velocity representation over time, it should be possible for the brain to form a stored representation of the body's path through the environment.
Rachel Wilson
Joseph B. Martin Professor of Basic Research in the Field of Neurobiology, Harvard Medical School. Investigator, Howard Hughes Medical Institute.
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow