World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
Sorbonne University, Paris Brain Institute
Showing your local timezone
Schedule
Wednesday, March 30, 2022
11:00 AM America/Chicago
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Analogical Minds
Seminar location
No geocoded details are available for this content yet.
Analogical reasoning is one of the most complex cognitive functions in humans that allows abstract thinking, high-level reasoning, and learning. Based on analogical reasoning, one can extract an abstract and general concept (i.e., an analogy schema) from a familiar situation and apply it to a new context or domain (i.e., analogy transfer). These processes allow us to solve problems we never encountered before and generate new ideas. However, the place of analogy transfer in problem solving mechanisms is unclear. This presentation will describe several experiments with three main findings. First, we show how analogy transfer facilitates problem-solving, replicating existing empirical data largely based on the radiation/fortress problems with four new riddles. Second, we propose a new experimental task that allows us to quantify analogy transfer. Finally, using science network methodology, we show how restructuring the mental representation of a problem can predict successful solving of an analogous problem. These results shed new light on the cognitive mechanism underlying solution transfer by analogy and provide a new tool to quantify individual abilities.
Théophile Bieth
Dr
Sorbonne University, Paris Brain Institute
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe