Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Prefrontal Top Down Projections

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Prefrontal top-down projections control context-dependent strategy selection

Olivier Gschwend

Medidee Services SA, (former postdoc at Cold Spring Harbor Laboratory)

Schedule
Tuesday, December 6, 2022

Showing your local timezone

Schedule

Tuesday, December 6, 2022

5:35 PM Europe/Berlin

Watch recording
Host: WWNeuRise

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

WWNeuRise

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

The rules governing behavior often vary with behavioral contexts. As a result, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC). However, how the PFC orchestrates the context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In mice trained in a decision-making task in which a previously established rule and a newly learned rule are associated with distinct contexts, the activity of mPFC neurons projecting to the dorsomedial striatum (mPFC-DMS) encodes the contexts and further represents decision strategies conforming to the old and new rules. Moreover, mPFC-DMS neuron activity is required for the context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus (mPFC-VMT) does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one. Furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that mPFC-DMS neurons promote flexible strategy selection guided by contexts, whereas mPFC-VMT neurons favor fixed strategy selection by preserving old rules.

Topics

behavioural flexibilitycontext-dependent strategydecision-makingdorsomedial striatummPFC-DMSmPFC-VMTmedial PFCneuronal activityprefrontal cortex

About the Speaker

Olivier Gschwend

Medidee Services SA, (former postdoc at Cold Spring Harbor Laboratory)

Contact & Resources

Personal Website

www.oliviergschwend.ch

@OlivierGschwend

Follow on Twitter/X

twitter.com/OlivierGschwend

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights