← Back

Neuronal Activity

Topic spotlight
TopicWorld Wide

neuronal activity

Discover seminars, jobs, and research tagged with neuronal activity across World Wide.
84 curated items58 Seminars25 ePosters1 Position
Updated 1 day ago
84 items · neuronal activity
84 results
Position

Pirta Hotulainen

Minerva Foundation Institute for Medical Research
Helsinki, Finland
Dec 5, 2025

4-Year PhD student position. Neuronal activity and formation of new connections are crucial for brain functions. Although we know that these two processes are somehow linked together, we do not actually know how this functional interplay is controlled. In this project, we will elucidate how neuronal activity contributes to the formation of new connections. Specifically, we will elucidate the regulatory mechanisms governing activity-dependent dendritic spine initiation. This knowledge is fundamental in order to tailor specific drugs to treat neuropathic pain or prevent its formation. Without exact understanding of the molecular mechanisms underlying brain functions, we are shooting in the dark with drug trials. We hypothesize that expression of spine initiation factors contributes to chronicity of neuropathic pain via reorganization of dendritic spines in the spinal cord. This hypothesis will be tested with an in vivo mouse model for neuropathic pain. A long-term goal is to pharmacologically and genetically target these mechanisms to reverse or prevent neuropathic pain. This project will focus on two working hypotheses on the mechanisms linking neuronal activity to the formation of new connections between neurons. Our first hypothesis is that neuronal activity regulates the phosphoinositide composition on the plasma membrane, and specific phosphoinositides recruit spine initiation factors on the membrane when there is a need for a new spine. The other hypothesis is that neuronal activity regulates the expression of specific microRNAs, which will then regulate the local expression of spine initiation factors. For these studies, we will use primary hippocampal neurons and organotypic hippocampal brain slices combined with various protocols to change neuronal activity. The project represents a pioneering effort to solve at the molecular level the mechanisms underlying neuropathic pain, and the knowledge achieved will be used to design specific small molecules to treat such pain.

SeminarNeuroscience

The Direct Impact Of Amyloid-Beta Oligomers On Neuronal Activity And Neurotransmitter Releases On In Vivo Analysis

Vincent Hervé
Université de Montréal
Jun 4, 2025
SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 12, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscience

Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task

Albert Compte
IDIBAPS
Nov 16, 2023

Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.

SeminarNeuroscience

In vivo direct imaging of neuronal activity at high temporospatial resolution

Jang-Yeon Park
Sungkyunkwan University, Suwon, Korea
Jun 27, 2023

Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.

SeminarNeuroscience

The Geometry of Decision-Making

Iain Couzin
University of Konstanz, Germany
May 23, 2023

Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.

SeminarNeuroscience

Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation

Mark Buckley
Oxford University
May 4, 2023

Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.

SeminarNeuroscience

Quasicriticality and the quest for a framework of neuronal dynamics

Leandro Jonathan Fosque
Beggs lab, IU Bloomington
May 2, 2023

Critical phenomena abound in nature, from forest fires and earthquakes to avalanches in sand and neuronal activity. Since the 2003 publication by Beggs & Plenz on neuronal avalanches, a growing body of work suggests that the brain homeostatically regulates itself to operate near a critical point where information processing is optimal. At this critical point, incoming activity is neither amplified (supercritical) nor damped (subcritical), but approximately preserved as it passes through neural networks. Departures from the critical point have been associated with conditions of poor neurological health like epilepsy, Alzheimer's disease, and depression. One complication that arises from this picture is that the critical point assumes no external input. But, biological neural networks are constantly bombarded by external input. How is then the brain able to homeostatically adapt near the critical point? We’ll see that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality while maintaining optimal properties for information transmission. We’ll see that simulations and experimental data confirm these predictions and describe new ones that could be tested soon. More importantly, we will see how this organizing principle could help in the search for biomarkers that could soon be tested in clinical studies.

SeminarNeuroscienceRecording

Nature over Nurture: Functional neuronal circuits emerge in the absence of developmental activity

Dániel L. Barabási
Engert lab, MCB Harvard University
Apr 4, 2023

During development, the complex neuronal circuitry of the brain arises from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that neuronal activity plays a critical role in shaping circuits for behavior. Current AI technologies are modeled after the same principle: connections in an initial weight matrix are pruned and strengthened by activity-dependent signals until the network can sufficiently generalize a set of inputs into outputs. Here, we challenge these learning-dominated assumptions by quantifying the contribution of neuronal activity to the development of visually guided swimming behavior in larval zebrafish. Intriguingly, dark-rearing zebrafish revealed that visual experience has no effect on the emergence of the optomotor response (OMR). We then raised animals under conditions where neuronal activity was pharmacologically silenced from organogenesis onward using the sodium-channel blocker tricaine. Strikingly, after washout of the anesthetic, animals performed swim bouts and responded to visual stimuli with 75% accuracy in the OMR paradigm. After shorter periods of silenced activity OMR performance stayed above 90% accuracy, calling into question the importance and impact of classical critical periods for visual development. Detailed quantification of the emergence of functional circuit properties by brain-wide imaging experiments confirmed that neuronal circuits came ‘online’ fully tuned and without the requirement for activity-dependent plasticity. Thus, contrary to what you learned on your mother's knee, complex sensory guided behaviors can be wired up innately by activity-independent developmental mechanisms.

SeminarNeuroscience

Neuron-glial interactions in health and disease: from cognition to cancer

Michelle Monje
Stanford Medicine
Mar 13, 2023

In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.

SeminarNeuroscienceRecording

Prefrontal top-down projections control context-dependent strategy selection

Olivier Gschwend
Medidee Services SA, (former postdoc at Cold Spring Harbor Laboratory)
Dec 6, 2022

The rules governing behavior often vary with behavioral contexts. As a result, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC). However, how the PFC orchestrates the context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In mice trained in a decision-making task in which a previously established rule and a newly learned rule are associated with distinct contexts, the activity of mPFC neurons projecting to the dorsomedial striatum (mPFC-DMS) encodes the contexts and further represents decision strategies conforming to the old and new rules. Moreover, mPFC-DMS neuron activity is required for the context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus (mPFC-VMT) does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one. Furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that mPFC-DMS neurons promote flexible strategy selection guided by contexts, whereas mPFC-VMT neurons favor fixed strategy selection by preserving old rules.

SeminarNeuroscience

Restructuring cortical feedback circuits

Andreas Keller
Institute of Molecular and Clinical Ophthalmology, Basel
Nov 2, 2022

We hardly notice when there is a speck on our glasses, the obstructed visual information seems to be magically filled in. The mechanistic basis for this fundamental perceptual phenomenon has, however, remained obscure. What enables neurons in the visual system to respond to context when the stimulus is not available? While feedforward information drives the activity in cortex, feedback information is thought to provide contextual signals that are merely modulatory. We have made the discovery that mouse primary visual cortical neurons are strongly driven by feedback projections from higher visual areas when their feedforward sensory input from the retina is missing. This drive is so strong that it makes visual cortical neurons fire as much as if they were receiving a direct sensory input. These signals are likely used to predict input from the feedforward pathway. Preliminary results show that these feedback projections are strongly influenced by experience and learning.

SeminarNeuroscienceRecording

Associative memory of structured knowledge

Julia Steinberg
Princeton University
Oct 25, 2022

A long standing challenge in biological and artificial intelligence is to understand how new knowledge can be constructed from known building blocks in a way that is amenable for computation by neuronal circuits. Here we focus on the task of storage and recall of structured knowledge in long-term memory. Specifically, we ask how recurrent neuronal networks can store and retrieve multiple knowledge structures. We model each structure as a set of binary relations between events and attributes (attributes may represent e.g., temporal order, spatial location, role in semantic structure), and map each structure to a distributed neuronal activity pattern using a vector symbolic architecture (VSA) scheme. We then use associative memory plasticity rules to store the binarized patterns as fixed points in a recurrent network. By a combination of signal-to-noise analysis and numerical simulations, we demonstrate that our model allows for efficient storage of these knowledge structures, such that the memorized structures as well as their individual building blocks (e.g., events and attributes) can be subsequently retrieved from partial retrieving cues. We show that long-term memory of structured knowledge relies on a new principle of computation beyond the memory basins. Finally, we show that our model can be extended to store sequences of memories as single attractors.

SeminarNeuroscience

Untitled Seminar

Heiko Luhmann (Germany), Mary Tolcos (Australia), Silvia Velasco (Australia)
Jul 26, 2022

Heiko Luhmann (Germany) – How neuronal activity builds the cerebral cortex; Mary Tolcos (Australia) – Cortical development and fetal brain injury; Silvia Velasco (Australia) – Human brain organoids to study neurodevelopment and disease

SeminarNeuroscience

Molecular Logic of Synapse Organization and Plasticity

Tabrez Siddiqui
University of Manitoba
May 30, 2022

Connections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.

SeminarNeuroscience

From a by-stander to an influencer: How microglia adapt to altered environments and influence neuronal activity

Sandra Siegert
Institute of Science and Technology Austria
May 2, 2022

Microglia, traditionally classified as immune-responsive, adjust synaptic connections during development and disease. However, their role in the adult nervous system has been mostly diminished to an observer. In my research group, we are interested in how microglia are involved in establishing and maintaining accurate neuronal circuit function in the retina and in the visual cortex. In my talk, I will introduce our strategies how to decipher the microglia’s functional identity and how this information guided us to microglia enabled extracellular matrix remodeling and reinstatment of juvenile-like plasticity in the adult brain.

SeminarOpen SourceRecording

Mesmerize: A blueprint for shareable and reproducible analysis of calcium imaging data

Kushal Kolar
University of North Carolina at Chapel Hill
Apr 5, 2022

Mesmerize is a platform for the annotation and analysis of neuronal calcium imaging data. Mesmerize encompasses the entire process of calcium imaging analysis from raw data to interactive visualizations. Mesmerize allows you to create FAIR-functionally linked datasets that are easy to share. The analysis tools are applicable for a broad range of biological experiments and come with GUI interfaces that can be used without requiring a programming background.

SeminarNeuroscienceRecording

How does the metabolically-expensive mammalian brain adapt to food scarcity?

Zahid Padamsey
Rochefort lab, University of Edinburgh
Feb 22, 2022

Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. I addressed this in the visual cortex of awake mice using whole-cell recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. I found that food restriction reduced synaptic ATP usage by 29% through a decrease in AMPA receptor conductance. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.

SeminarNeuroscience

Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice

Tim Viney
University of Oxford
Feb 10, 2022

The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.

SeminarNeuroscienceRecording

Norepinephrine links astrocytic activity to regulation of cortical state

Michael Reitman
Poskanzer Lab, UCSF
Jan 25, 2022

Cortical state, defined by the synchrony of population-level neuronal activity, is a key determinant of sensory perception. While many arousal-associated neuromodulators—including norepinephrine (NE)—reduce cortical synchrony, how the cortex resynchronizes following NE signaling remains unknown. Using in vivo two-photon imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes’ sensitive calcium responses to changes in behavioral arousal and NE, identify that astrocyte signaling precedes increases in cortical synchrony, and demonstrate that astrocyte-specific deletion of Adra1A alters arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.

SeminarNeuroscience

What does the primary visual cortex tell us about object recognition?

Tiago Marques
MIT
Jan 23, 2022

Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.

SeminarNeuroscienceRecording

NMC4 Short Talk: Different hypotheses on the role of the PFC in solving simple cognitive tasks

Nathan Cloos (he/him)
Université Catholique de Louvain
Dec 1, 2021

Low-dimensional population dynamics can be observed in neural activity recorded from the prefrontal cortex (PFC) of subjects performing simple cognitive tasks. Many studies have shown that recurrent neural networks (RNNs) trained on the same tasks can reproduce qualitatively these state space trajectories, and have used them as models of how neuronal dynamics implement task computations. The PFC is also viewed as a conductor that organizes the communication between cortical areas and provides contextual information. It is then not clear what is its role in solving simple cognitive tasks. Do the low-dimensional trajectories observed in the PFC really correspond to the computations that it performs? Or do they indirectly reflect the computations occurring within the cortical areas projecting to the PFC? To address these questions, we modelled cortical areas with a modular RNN and equipped it with a PFC-like cognitive system. When trained on cognitive tasks, this multi-system brain model can reproduce the low-dimensional population responses observed in neuronal activity as well as classical RNNs. Qualitatively different mechanisms can emerge from the training process when varying some details of the architecture such as the time constants. In particular, there is one class of models where it is the dynamics of the cognitive system that is implementing the task computations, and another where the cognitive system is only necessary to provide contextual information about the task rule as task performance is not impaired when preventing the system from accessing the task inputs. These constitute two different hypotheses about the causal role of the PFC in solving simple cognitive tasks, which could motivate further experiments on the brain.

SeminarNeuroscience

Dysfunctional synaptic vesicle recycling – links to epilepsy

Mike Cousin
University of Edinburgh
Nov 30, 2021

Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.

SeminarNeuroscienceRecording

Generative models of brain function: Inference, networks, and mechanisms

Adeel Razi
Monash University
Nov 25, 2021

This talk will focus on the generative modelling of resting state time series or endogenous neuronal activity. I will survey developments in modelling distributed neuronal fluctuations – spectral dynamic causal modelling (DCM) for functional MRI – and how this modelling rests upon functional connectivity. The dynamics of brain connectivity has recently attracted a lot of attention among brain mappers. I will also show a novel method to identify dynamic effective connectivity using spectral DCM. Further, I will summarise the development of the next generation of DCMs towards large-scale, whole-brain schemes which are computationally inexpensive, to the other extreme of the development using more sophisticated and biophysically detailed generative models based on the canonical microcircuits.

SeminarNeuroscience

Spontaneous activity competes with externally evoked responses in sensory cortex

Golan Karvat
Diester lab, University of Freiburg, Germany
Nov 24, 2021

The interaction between spontaneously and externally evoked neuronal activity is fundamental for a functional brain. Increasing evidence suggests that bursts of high-power oscillations in the 15-30 Hz beta-band represent activation of resting state networks and can mask perception of external cues. Yet demonstration of the effect of beta power modulation on perception in real-time is missing, and little is known about the underlying mechanism. In this talk I will present the methods we developed to fill this gap together with our recent results. We used a closed-loop stimulus-intensity adjustment system based on online burst-occupancy analyses in rats involved in a forepaw vibrotactile detection task. We found that the masking influence of burst-occupancy on perception can be counterbalanced in real-time by adjusting the vibration amplitude. Offline analysis of firing-rates and local field potentials across cortical layers and frequency bands confirmed that beta-power in the somatosensory cortex anticorrelated with sensory evoked responses. Mechanistically, bursts in all bands were accompanied by transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction of firing-rate. Our closed loop approach reveals that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.

SeminarNeuroscience

Networking—the key to success… especially in the brain

Alexander Dunn
University of Cambridge, DAMTP
Nov 16, 2021

In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscienceRecording

Large-scale approaches for distributed circuits underlying visual decision-making

Nick Steinmetz
University of Washington
Oct 10, 2021

Mammalian vision and visually-guided behavior relies on neurons distributed across diverse brain regions. In this talk I will describe our efforts to create tools that allow us to measure activity from these distributed circuits - Neuropixels probes for large-scale electrophysiology - and our findings from studies deploying these tools to study visual detection and discrimination in mice.

SeminarNeuroscienceRecording

Neocortex saves energy by reducing coding precision during food scarcity

Nathalie Rochefort
University of Edinburgh
Sep 26, 2021

Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. We addressed this in the visual cortex of awake mice using whole-cell patch clamp recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. We found that food restriction resulted in energy savings through a decrease in AMPA receptor conductance, reducing synaptic ATP usage by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.

SeminarNeuroscience

Multiphoton imaging with next-generation indicators

Manuel Mohr
Stanford University
Jun 29, 2021

Two-photon (2P) in vivo functional imaging of genetically encoded fluorescent Ca2+indicators (GECIs) for neuronal activity has become a broadly applied standard tool in modern neuroscience, because it allows simultaneous imaging of the activity of many neurons at high spatial resolution within living animals. Unfortunately, the most commonly used light-sources – tunable femtosecond pulsed ti:sapphire lasers – can be prohibitively expensive for many labs and fall short of delivering sufficient powers for some new ultra-fast 2P microscopy modalities. Inexpensive homebuilt or industrial light sources such as Ytterbium fiber lasers (YbFLs) show great promise to overcome these limitations as they are becoming widely available at costs orders of magnitude lower and power outputs of up to many times higher than conventional ti:sapphire lasers. However, these lasers are typically bound to emitting a single wavelength (i.e., not tunable) centered around 1020-1060 nm, which fails to efficiently excite state of the art green GECIs such as jGCaMP7 or 8. To this end, we designed and characterized spectral variants (yellow CaMP = YCaMP) of the ultrasensitive genetically encoded calcium indicator jGCaMP7, that allows for efficient 2P-excitation at wavelengths above 1010nm. In this talk I will give a brief overview over some of the reasons why using a fiber laser for 2P excitation might be right for you. I will talk about the development of jYCaMP and some exciting new experimental avenues that it has opened while touching on the prospect that shifting biosensors yellow could have for the 2P imaging community. Please join me for an interesting and fun discussion on whether “yellow is the new green” after the talk!

SeminarNeuroscience

Estimation of current and future physiological states in insular cortex

Mark Andermann
Harvard University
Jun 28, 2021

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.

SeminarNeuroscience

Neuronal activity in development and disease of the cerebral cortex

Simona Lodato
Humanitas University
Jun 23, 2021
SeminarNeuroscienceRecording

Structures in space and time - Hierarchical network dynamics in the amygdala

Yael Bitterman
Luethi lab, FMI for Biomedical Research
Jun 15, 2021

In addition to its role in the learning and expression of conditioned behavior, the amygdala has long been implicated in the regulation of persistent states, such as anxiety and drive. Yet, it is not evident what projections of the neuronal activity capture the functional role of the network across such different timescales, specifically when behavior and neuronal space are complex and high-dimensional. We applied a data-driven dynamical approach for the analysis of calcium imaging data from the basolateral amygdala, collected while mice performed complex, self-paced behaviors, including spatial exploration, free social interaction, and goal directed actions. The seemingly complex network dynamics was effectively described by a hierarchical, modular structure, that corresponded to behavior on multiple timescales. Our results describe the response of the network activity to perturbations along different dimensions and the interplay between slow, state-like representation and the fast processing of specific events and actions schemes. We suggest hierarchical dynamical models offer a unified framework to capture the involvement of the amygdala in transitions between persistent states underlying such different functions as sensory associative learning, action selection and emotional processing. * Work done in collaboration with Jan Gründemann, Sol Fustinana, Alejandro Tsai and Julien Courtin (@theLüthiLab)

SeminarNeuroscienceRecording

Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning

Adi Kol
Goshen lab, Edmond and Lily Safra Center for Brain Sciences
Apr 6, 2021

How is it that some memories fade in a day while others last forever? The formation of long-lasting (remote) memories depends on the coordinated activity between the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes, star-shaped glial cells, sense and modify neuronal activity, but their role in remote memory is scarcely explored. We manipulated the activity of hippocampal astrocytes during memory acquisition and discovered it impaired remote, but not recent, memory retrieval. We also revealed a massive recruitment of cortical-projecting hippocampal neurons during memory acquisition, a process that is specifically inhibited by astrocytic manipulation. Finally, we directly inhibited this projection during memory acquisition to prove its necessity for the formation of remote memory. Our findings reveal that the foundation of remote memory can be established during acquisition with projection-specific effect of astrocytes.

SeminarNeuroscienceRecording

Robust Encoding of Abstract Rules by Distinct Neuronal Populations in Primate Visual Cortex

Tirin Moore
Stanford University
Mar 18, 2021

I will discuss our recent evidence showing that information about abstract rules can be decoded from neuronal activity in primate visual cortex even in the absence of sensory stimulation. Furthermore, that rule information is greatest among neurons with the least visual activity and the weakest coupling to local neuronal networks. In addition, I will talk about recent developments in large-scale neurophysiological techniques in nonhuman primates.

SeminarNeuroscience

All optical interrogation of developing GABAergic circuits in vivo

Rosa Cossart
Mediterranean Neurobiology Institute, Faculté de Médecine, Aix-Marseille Université, Marseille, France
Mar 16, 2021

The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring and programmed cell-death. But cortical GABAergic neurons are also specified by very early developmental programs. For example, the earliest born GABAergic neurons develop into hub cells coordinating spontaneous activity in hippocampal slices. Despite their importance for the emergence of sensory experience, their role in coordinating network dynamics, and the role of activity in their integration into cortical networks, the collective in vivo dynamics of GABAergic neurons during the neonatal postnatal period remain unknown. Here, I will present data related to the coordinated activity between GABAergic cells of the mouse barrel cortex and hippocampus in non-anesthetized pups using the recent development of all optical methods to record and manipulate neuronal activity in vivo. I will show that the functional structure of developing GABAergic circuits is remarkably patterned, with segregated assemblies of prospective parvalbumin neurons and highly connected hub cells, both shaped by sensory-dependent processes.

SeminarNeuroscience

How the immune system shapes synaptic functions

Michela Matteoli
Humanitas Research Hospital and CNR Institute of Neuroscience, Milano, Italy
Mar 15, 2021

The synapse is the core component of the nervous system and synapse formation is the critical step in the assembly of neuronal circuits. The assembly and maturation of synapses requires the contribution of secreted and membrane-associated proteins, with neuronal activity playing crucial roles in regulating synaptic strength, neuronal membrane properties, and neural circuit refinement. The molecular mechanisms of synapse assembly and refinement have been so far largely examined on a gene-by-gene basis and with a perspective fully centered on neuronal cells. However, in the last years, the involvement of non-neuronal cells has emerged. Among these, microglia, the resident immune cells of the central nervous system, have been shown to play a key role in synapse formation and elimination. Contacts of microglia with dendrites in the somatosensory cortex were found to induce filopodia and dendritic spines via Ca2+ and actin-dependent processes, while microglia-derived BDNF was shown to promote learning-dependent synapse formation. Microglia is also recognized to have a central role in the widespread elimination (or pruning) of exuberant synaptic connections during development. Clarifying the processes by which microglia control synapse homeostasis is essential to advance our current understanding of brain functions. Clear answers to these questions will have important implications for our understanding of brain diseases, as the fact that many psychiatric and neurological disorders are synaptopathies (i.e. diseases of the synapse) is now widely recognized. In the last years, my group has identified TREM2, an innate immune receptor with phagocytic and antiinflammatory properties expressed in brain exclusively by microglia, as essential for microglia-mediated synaptic refinement during the early stages of brain development. The talk will describe the role of TREM2 in synapse elimination and introduce the molecular actors involved. I will also describe additional pathways by which the immune system may affect the formation and homeostasis of synaptic contacts.

SeminarNeuroscience

The role of orexin/hypocretin in social behaviour

Derya Sargin
The Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute University of Calgary
Mar 7, 2021

My lab is focused on how brain encodes and modulates social interactions. Intraspecific social interactions are integral for survival and maintenance of society among all mammalian species. Despite the importance of social interactions, we lack a complete understanding of the brain circuitry involved in processing social behaviour. My lab investigates how the hypothalamic orexin (hypocretin) neurons and their downstream circuits participate in social interaction behaviours. These neurons are located exclusively in the hypothalamus that regulates complex and goal-directed behaviours. We recently identified that orexin neurons differentially encode interaction between familiar and novel animals. We are currently investigating how chronic social isolation, a risk factor for the development of social-anxiety like behaviours, affects orexin neuron activity and how we can manipulate the activity of these neurons to mitigate isolation-induced social deficits.

SeminarNeuroscienceRecording

Playing fast and loose with glutamate builds healthy circuits in the developing cortex

Chris Dulla
Tufts University
Feb 16, 2021

The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.

SeminarNeuroscienceRecording

Cellular mechanisms behind stimulus evoked quenching of variability

Brent Doiron
University of Chicago
Jan 26, 2021

A wealth of experimental studies show that the trial-to-trial variability of neuronal activity is quenched during stimulus evoked responses. This fact has helped ground a popular view that the variability of spiking activity can be decomposed into two components. The first is due to irregular spike timing conditioned on the firing rate of a neuron (i.e. a Poisson process), and the second is the trial-to-trial variability of the firing rate itself. Quenching of the variability of the overall response is assumed to be a reflection of a suppression of firing rate variability. Network models have explained this phenomenon through a variety of circuit mechanisms. However, in all cases, from the vantage of a neuron embedded within the network, quenching of its response variability is inherited from its synaptic input. We analyze in vivo whole cell recordings from principal cells in layer (L) 2/3 of mouse visual cortex. While the variability of the membrane potential is quenched upon stimulation, the variability of excitatory and inhibitory currents afferent to the neuron are amplified. This discord complicates the simple inheritance assumption that underpins network models of neuronal variability. We propose and validate an alternative (yet not mutually exclusive) mechanism for the quenching of neuronal variability. We show how an increase in synaptic conductance in the evoked state shunts the transfer of current to the membrane potential, formally decoupling changes in their trial-to-trial variability. The ubiquity of conductance based neuronal transfer combined with the simplicity of our model, provides an appealing framework. In particular, it shows how the dependence of cellular properties upon neuronal state is a critical, yet often ignored, factor. Further, our mechanism does not require a decomposition of variability into spiking and firing rate components, thereby challenging a long held view of neuronal activity.

SeminarNeuroscienceRecording

Human neuronal activity-dependent gene regulation in development and disease

Gabriella Boulting
Harvard Medical School
Jan 12, 2021
SeminarNeuroscience

Neuroendocrine control of female germline stem cell increase in the fruit fly Drosophila melanogaster

Ryusuke Niwa
Life Science Center for Survival Dynamics,Tsukuba Advanced Research Alliance (TARA) University of Tsukuba, Japan
Jan 10, 2021

The development and maintenance of many tissues are fueled by stem cells. Many studies have addressed how intrinsic factors and local signals from neighboring niche cells maintain stem cell identity and proliferative potential. In contrast, it is poorly understood how stem cell activity is controlled by systemic, tissue-extrinsic signals in response to environmental cues and changes in physiological status. Our laboratory has been focusing on female germline stem cells (fGSCs) in the fruit fly Drosophila melanogaster as a model system and studying neuroendocrine control of fGSC increase. The increase of fGSCs is induced by mating stimuli. We have previously reported that mating-induced fGSC increase is regulated by the ovarian steroid hormone and the enteroendocrine peptide hormone [Ameku & Niwa, PLOS Genetics 2016; Ameku et al. PLOS Biology 2018]. In this presentation, we report our recent finding showing a neuronal mechanism of mating-induced fGSC increase. We first found that the ovarian somatic cell-specific RNAi for Oamb, a G protein-coupled receptor for the neurotransmitter octopamine, failed to induce fGSC proliferation after mating. Both ex vivo and in vivo experiments revealed that octopamine and Oamb positively regulated mating-induced fGSC increase via intracellular Ca 2+ signaling. We also found that a small subset of octopaminergic neurons directly projected to the ovary, and neuronal activity of these neurons was required for mating-induced fGSC increase. This study provides a mechanism describing how the neuronal system controls stem cell behavior through stem cell niche signaling [Yoshinari et al. eLife 2020]. Here I will also present our recent data showing how the neuroendocrine system couples fGSC behavior to multiple environmental cues, such as mating and nutrition.

SeminarNeuroscience

Experience dependent changes of sensory representation in the olfactory cortex

Antonia Marin Burgin
Biomedicine Research Institute of Buenos Aires
Nov 17, 2020

Sensory representations are typically thought as neuronal activity patterns that encode physical attributes of the outside world. However, increasing evidence is showing that as animals learned the association between a sensory stimulus and its behavioral relevance, stimulus representation in sensory cortical areas can change. In this seminar I will present recent experiments from our lab showing that the activity in the olfactory piriform cortex (PC) of mice encodes not only odor information, but also non-olfactory variables associated with the behavioral task. By developing an associative olfactory learning task, in which animals learn to associate a particular context with an odor and a reward, we were able to record the activity of multiple neurons as the animal runs in a virtual reality corridor. By analyzing the population activity dynamics using Principal Components Analysis, we find different population trajectories evolving through time that can discriminate aspects of different trial types. By using Generalized Linear Models we further dissected the contribution of different sensory and non-sensory variables to the modulation of PC activity. Interestingly, the experiments show that variables related to both sensory and non-sensory aspects of the task (e.g., odor, context, reward, licking, sniffing rate and running speed) differently modulate PC activity, suggesting that the PC adapt odor processing depending on experience and behavior.

SeminarPhysics of LifeRecording

Holographic control of neuronal circuits

Valentina Emiliani
Vision Institut, France
Nov 3, 2020

Genetic targeting of neuronal cells with activity reporters (calcium or voltage indicators) has initiated the paradigmatic transition whereby photons have replaced electrons for reading large-scale brain activities at cellular resolution. This has alleviated the limitations of single cell or extracellular electrophysiological probing, which only give access to the activity of at best a few neurons simultaneously and to population activity of unresolved cellular origin, respectively. In parallel, optogenetics has demonstrated that targeting neuronal cells with photosensitive microbial opsins, enables the transduction of photons into electrical currents of opposite polarities thus writing, through activation or inhibition, neuronal signals in a non-invasive way. These progresses have in turn stimulated the development of sophisticated optical methods to increase spatial and temporal resolution, light penetration depth and imaging volume. Today, nonlinear microscopy, combined with spatio-temporal wave front shaping, endoscopic probes engineering or multi scan heads design, enable in vivo in depth, simultaneous recording of thousands of cells in mm 3 volumes at single-spike precision and single-cell resolution. Joint progress in opsin engineering, wave front shaping and laser development have provided the methodology, that we named circuits optogenetics, to control single or multiple target activity independently in space and time with single- neuron and single-spike precision, at large depths. Here, we will review the most significant breakthroughs of the past years, which enable reading and writing neuronal activity at the relevant spatiotemporal scale for brain circuits manipulation, with particular emphasis on the most recent advances in circuit optogenetics.

SeminarNeuroscienceRecording

Mechanism(s) of negative feedback from horizontal cells to cones and its consequence for (color) vision

Maarten Kamermans
Netherland Institute for Neurosciences
Oct 25, 2020

Vision starts in the retina where images are transformed and coded into neuronal activity relevant for the brain. These coding steps function optimally over a wide range of conditions: from bright day on the beach to a moonless night. Under these very different conditions, specific retinal mechanisms continue to select relevant aspects of the visual world and send this information to the brain. We are studying the neuronal processing involved in these selection and adaptation processes. This knowledge is essential for understanding how the visual system works and forms the basis for research dedicated to restoring vision in blind people.

SeminarNeuroscienceRecording

Tools for Analyzing and Repairing the Brain. (Simultaneous translation to Spanish)

Ed Boyden
Y. Eva Tan Professor in Neurotechnology at MIT
Oct 11, 2020

To enable the understanding and repair of complex biological systems, such as the brain, we are creating novel optical tools that enable molecular-resolution maps of such systems, as well as technologies for observing and controlling high-speed physiological dynamics in such systems. First, we have developed a method for imaging specimens with nanoscale precision, by embedding them in a swellable polymer, homogenizing their mechanical properties, and exposing them to water – which causes them to expand manyfold isotropically. This method, which we call expansion microscopy (ExM), enables ordinary microscopes to do nanoscale imaging, in a multiplexed fashion – important, for example, for brain mapping. Second, we have developed a set of genetically-encoded reagents, known as optogenetic tools, that when expressed in specific neurons, enable their electrical activities to be precisely driven or silenced in response to millisecond timescale pulses of light. Finally, we are designing, and evolving, novel reagents, such as fluorescent voltage indicators and somatically targeted calcium indicators, to enable the imaging of fast physiological processes in 3-D with millisecond precision. In this way we aim to enable the systematic mapping, control, and dynamical observation of complex biological systems like the brain. The talk will be simultaneously interpreted English-Spanish) by the Interpreter, Mg. Lourdes Martino. Para permitir la comprensión y reparación de sistemas biológicos complejos, como el cerebro, estamos creando herramientas ópticas novedosas que permiten crear mapas de resolución molecular de dichos sistemas, así como tecnologías para observar y controlar la dinámica fisiológica de alta velocidad en dichos sistemas. Primero, hemos desarrollado un método para obtener imágenes de muestras con precisión a nanoescala, incrustándolas en un polímero hinchable, homogeneizando sus propiedades mecánicas y exponiéndolas al agua, lo que hace que se expandan muchas veces isotrópicamente. Este método, que llamamos microscopía de expansión (ExM), permite que los microscopios ordinarios obtengan imágenes a nanoescala, de forma multiplexada, lo que es importante, por ejemplo, para el mapeo cerebral. En segundo lugar, hemos desarrollado un conjunto de reactivos codificados genéticamente, conocidos como herramientas optogenéticas, que cuando se expresan en neuronas específicas, permiten que sus actividades eléctricas sean activadas o silenciadas con precisión en respuesta a pulsos de luz en una escala de tiempo de milisegundos. Finalmente, estamos diseñando y desarrollando reactivos novedosos, como indicadores de voltaje fluorescentes e indicadores de calcio dirigidos somáticamente, para permitir la obtención de imágenes de procesos fisiológicos rápidos en 3-D con precisión de milisegundos. De esta manera, nuestro objetivo es permitir el mapeo sistemático, el control y la observación dinámica de sistemas biológicos complejos como el cerebro. La conferencia será traducida simultáneamente al español por la intérprete Mg. Lourdes Martino.

SeminarNeuroscience

Revealing the neural basis of human memory with direct recordings of place and grid cells and traveling waves

Joshua Jacobs
Columbia University
May 12, 2020

The ability to remember spatial environments is critical for everyday life. In this talk, I will discuss my lab’s findings on how the human brain supports spatial memory and navigation based on our experiments with direct brain recordings from neurosurgical patients performing virtual-reality spatial memory tasks. I will show that humans have a network of neurons that represent where we are located and trying to go. This network includes some cell types that are similar to those seen in animals, such as place and grid cells, as well as others that have not been seen before in animals, such as anchor and spatial-target cells. I also will explore the role of network oscillations in human memory, where humans again show several distinctive patterns compared to animals. Whereas rodents generally show a hippocampal oscillation at ~8Hz, humans have two separate hippocampal oscillations, at low and high frequencies, which support memory and navigation, respectively. Finally, I will show that neural oscillations in humans are traveling waves, propagating across the cortex, to coordinate the timing of neuronal activity across regions, which is another property not seen in animals. A theme from this work is that in terms of navigation and memory the human brain has novel characteristics compared with animals, which helps explain our rich behavioural abilities and has implications for treating disease and neurological disorders.

ePoster

Bias-free estimation of information content in temporally sparse neuronal activity

COSYNE 2022

ePoster

Recording Multi-Neuronal Activity in Unrestrained Animals with 3D Random-Access 2-Photon Microscopy

Akihiro Yamaguchi, Rui Wu, Paul McNulty, Doycho Karagyozov, Mirna Mihovilovic Skanata, Marc Gershow

COSYNE 2023

ePoster

Aberrant neuronal activity and habituation of the giant fiber escape response circuit in Drosophila NF1 mutants: A pharmacogenetic approach

Efthimios Skoulakis, Eleni Giannopoulou, Kalliopi Atsoniou, Eirini-Maria Geogranta

FENS Forum 2024

ePoster

Acute stress regulates Agrp neuronal activity

Alexander Reichenbach, Felicia Reed, Zane Andrews

FENS Forum 2024

ePoster

Cerebellar neuronal activity during emotional control and the role of cerebellar-mPFC pathway in fear learning

Camilla Ciapponi, Lisa Mapelli, Egidio D'Angelo

FENS Forum 2024

ePoster

Dynamical adaptation of neuronal activity in the prefrontal cortex depending on different motivations behind a choice

Hugo Malagon-Vina, Dimitrios Mariatos Metaxas, Cristian Estarellas, Claudia Espinoza, Thomas Klausberger

FENS Forum 2024

ePoster

The effects of associative learning on neuronal activity and functional connections in the mouse brain resting state networks

Ksenia Toropova, Olga Ivashkina, Anna Ivanova, Konstantin Anokhin

FENS Forum 2024

ePoster

Elucidating neuronal activity patterns in autoimmune neuroinflammation: A brain-wide approach

María Nazareth González Alvarado, Bella Kim, Paulina Schwaiger, Sofia Grade

FENS Forum 2024

ePoster

Exploring dynamic interaction of oxytocin and relaxin-3 in modulating ventral CA3 neuronal activity in rats – insights from molecular and neurophysiological studies

Aleksandra Nogaj, Aleksandra Trenk, Kinga Przybylska, Andrew L. Gundlach, Anna Blasiak

FENS Forum 2024

ePoster

Functional analysis of spontaneous neuronal activity in cortical organoids as a model of human tauopathies

Karolina Zimkowska, Marc Riu-Villanueva, Amayra Hernández-Vega, Pol Picón-Pagès, Irene Fernandez-Carasa, Jorge Oliver-De La Cruz, Pere Roca-Cusachs, Antonella Consiglio, José Antonio del Río

FENS Forum 2024

ePoster

The impact of epileptic neuronal activity on oligodendrocyte lineage cells and myelination in a mouse model of focal cortical dysplasia

Adam Bogdanovič, Bohdana Hrušková, Nikola Vršková, Diana Pfeiferová, Monika Řehořová, Jan Kudláček, Přemysl Jiruška, Helena Pivoňková

FENS Forum 2024

ePoster

Learning-associated reconfiguration of neuronal activity within and across neocortical areas

Shuting Han, Fritjof Helmchen

FENS Forum 2024

ePoster

Longitudinal assessment of behaviour and neuronal activity in the lateral habenula in a mouse model of depression

Patricia Molina Molina, Sarah Mondoloni, Mauro Congiu, Manuel Mameli

FENS Forum 2024

ePoster

Mesoscale and miniaturized large-scale volumetric neuronal activity imaging

Tobias Nöbauer, Yuanlong Zhang, Alipasha Vaziri

FENS Forum 2024

ePoster

Modulation of neuronal activity via plasmonic nanoparticles

Ane Escobar, Ana Sanchez, Zuzanna Lawera, Marek Grzelczak, Francisco Javier Gil

FENS Forum 2024

ePoster

Neuronal activity in avian basal ganglia-cortical loop related to birdsong acoustic variation in zebra finches

Carmen Guerrero-Márquez, Eduarda Gervini Zampieri Centeno, Remya Sankar, Julien Braine, Arthur Leblois

FENS Forum 2024

ePoster

Neuronal activity inhibits axonal mitochondrial transport in a region-specific manner

Tom Venneman, Pieter Vanden Berghe

FENS Forum 2024

ePoster

Neuronal activity in prefrontal cortex and visual area V4 predict response speed and correct behavior in an attentional task through different mechanisms

Emile Caytan, Sofia Paneri, Georgia Gregoriou

FENS Forum 2024

ePoster

Neurons repurpose the integrated stress response effector GADD34 to enhance protein synthesis in response to neuronal activity

Mauricio Oliveira, Muhaned Mohamed, Megan Elder, Keylin Banegas-Morales, Maggie Mamcarz, Emily Lu, Ela Golhan, Nishika Navrange, Snehajyoti Chatterjee, Ted Abel, Eric Klann

FENS Forum 2024

ePoster

Nicotine suppresses feeding behavior by exerting opposite effects on the neuronal activity of the arcuate nucleus

José Enrique Ramírez Sánchez, Andrea Mondragon-García, César Sandoval-González, Fabiola Hernández-Vázquez, Salvador Hernández-López, Julieta Garduño

FENS Forum 2024

ePoster

Nonlinear neural circuit model accounts for nonhuman primates’ choice behaviour and LIP neuronal activity in perceptual decisions uncoupled from motor actions

Brendan Lenfesty, Abdoreza Asadpour, Michael N. Shadlen, Saugat Bhattacharyya, Shushruth Shushruth, KongFatt Wong-Lin

FENS Forum 2024

ePoster

OPCs modulate neuronal activity via direct contact on the lysosome releasing site of neurons

Lipao Fang, Ching-Hsin Lin, Yasser Medlej, Hsin-Fang Chang, Davide Gobbo, Qilin Guo, Wenhui Huang, Anja Scheller, Frank Kirchhoff, Xianshu Bai

FENS Forum 2024

ePoster

Proteasomal degradation of BAF complex subunit Brg1 upon increased neuronal activity and mTOR hyperactivation

Shiwani Kumari, Karolina Bogusz, Matylda Macias, Ewa Liszewska, Magdalena Bakun, Justyna Jackiewicz, Weronika Zajko, Jacek Jaworski

FENS Forum 2024

ePoster

Unveiling a novel neuropeptide interplay: Opposing actions of oxytocin and relaxin-3 on ventral hippocampal dentate gyrus neuronal activity – Rat and human studies

Aleksandra Trenk, Kinga Przybylska, Anna Gugula, Aleksandra Nogaj, Agus Hartoyo, Camila de Ávila, Mohammed Akhter Hossain, Anthony J. Intorcia, Geidy E. Serrano, Thomas G. Beach, Alessandro Crimi, Diego F. Mastroeni, Andrew L. Gundlach, Anna Blasiak

FENS Forum 2024

ePoster

Year-long multimodal access to neuronal activity in large brains

Domonkos Horvath, Klaudia Csikos, Fanni Somogyi, Abel Petik, Beatrix Kovacs, Dorottya Nagy, Gaspar Janos Schliszka, Attila Balazs Dobos, Lucia Wittner, Dries Kil, Gabriel Montaldo, Alan Urban, Botond Roska, Daniel Hillier

FENS Forum 2024