World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases, Technical University Munich, Germany
Showing your local timezone
Schedule
Monday, June 13, 2022
12:15 PM Europe/Zurich
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
NeuroLeman Network
Seminar location
No geocoded details are available for this content yet.
Our goal is to understand why myelin repair fails in multiple sclerosis and to develop regenerative medicines for the nervous system. A central obstacle for progress in this area has been the complex biology underlying the response to CNS injury. Acute CNS damage is followed by a multicellular response that encompasses different cell types and spans different scales. Currently, we do not understand which factors determines lesion recovery. Failure of inflammation to resolve is a key underlying reason of poor regeneration, and one focus is therefore on the biology of microglia during de- and remyelination, and their cross talk to other cells, in particular oligodendrocytes and the progenitor cells. In addition, we are exploring the link between lipid metabolism and inflammation, and its role in the regulation of regeneration. I will report about our recent progress in our understanding of how microglia promote regeneration in the CNS.
Mikael Simons
Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases, Technical University Munich, Germany
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe