Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations

Yul Kang

Lengyel lab, Cambridge University

Schedule
Wednesday, April 6, 2022

Showing your local timezone

Schedule

Wednesday, April 6, 2022

6:35 PM Europe/Berlin

Watch recording
Host: WWNeuRise

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

WWNeuRise

Duration

35 minutes

Abstract

To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.

Topics

allocentric locationbayesian filteringegocentric inputsenvironmental geometrygrid field deformationsnavigation behaviourpopulation codingspatial navigationuncertainty

About the Speaker

Yul Kang

Lengyel lab, Cambridge University

Contact & Resources

Personal Website

yulkang.net

@YulKang1

Follow on Twitter/X

twitter.com/YulKang1

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
January 2026
Full calendar →