World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Columbia University
Showing your local timezone
Schedule
Wednesday, February 23, 2022
12:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
van Vreeswijk TNS
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
Neural circuits exhibit complex activity patterns, both spontaneously and in response to external stimuli. Information encoding and learning in neural circuits depend on the ability of time-varying stimuli to control spontaneous network activity. In particular, variability arising from the sensitivity to initial conditions of recurrent cortical circuits can limit the information conveyed about the sensory input. Spiking and firing rate network models can exhibit such sensitivity to initial conditions that are reflected in their dynamic entropy rate and attractor dimensionality computed from their full Lyapunov spectrum. I will show how chaos in both spiking and rate networks depends on biophysical properties of neurons and the statistics of time-varying stimuli. In spiking networks, increasing the input rate or coupling strength aids in controlling the driven target circuit, which is reflected in both a reduced trial-to-trial variability and a decreased dynamic entropy rate. With sufficiently strong input, a transition towards complete network state control occurs. Surprisingly, this transition does not coincide with the transition from chaos to stability but occurs at even larger values of external input strength. Controllability of spiking activity is facilitated when neurons in the target circuit have a sharp spike onset, thus a high speed by which neurons launch into the action potential. I will also discuss chaos and controllability in firing-rate networks in the balanced state. For these, external control of recurrent dynamics strongly depends on correlations in the input. This phenomenon was studied with a non-stationary dynamic mean-field theory that determines how the activity statistics and the largest Lyapunov exponent depend on frequency and amplitude of the input, recurrent coupling strength, and network size. This shows that uncorrelated inputs facilitate learning in balanced networks. The results highlight the potential of Lyapunov spectrum analysis as a diagnostic for machine learning applications of recurrent networks. They are also relevant in light of recent advances in optogenetics that allow for time-dependent stimulation of a select population of neurons.
Rainer Engelken
Columbia University
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro