3d Imaging
3D imaging
Netta Cohen
Research Fellow position: This project explores individuality of neural circuits and neural activity in C. elegans brain, based on whole-brain-activity data and information about the C. elegans connectome (neural circuit wiring data). The project combines data driven approaches from AI on the one hand, and whole-brain computational modelling on the other. PhD opening: How do worms move in 3D? To address this question, we have built a 3D imaging system and have collected hours of footage. Prior work has focused on developing machine vision methods to reconstruct postures and trajectories; characterising postures and locomotion behaviours; and characterising and modelling locomotion strategies and foraging behaviours. This PhD can build on these foundations to perform exciting innovative experiments, and/or to build computational models of worm locomotion.
Development and evolution of neuronal connectivity
In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates. I will discuss the evolution of visual projection laterality during vertebrate evolution. In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.
Non-Telecentric 2P microscopy for 3D random access mesoscale imaging
Ultra-low-cost, easily implemented and flexible two-photon scanning microscopy modification offering a several-fold expanded three-dimensional field of view that also maintains single-cell resolution. Application of our system for imaging neuronal activity has been demonstrated on mice, zebrafish and fruit flies. Website: https://github.com/BadenLab/nTCscope
Light-bacteria interactions
In 1676, using candle light and a small glass sphere as the lens, van Leeuwenhoek discovered the microscopic world of living microorganisms. Today, using lasers, spatial light modulators, digital cameras and computers, we study the statistical and fluid mechanics of microswimmers in ways that were unimaginable only 50 years ago. With light we can image swimming bacteria in 3D, apply controllable force fields or sculpt their 3D environment. In addition to shaping the physical world outside cells we can use light to control the internal state of genetically modified bacteria. I will review our recent work with light-bacteria interactions, going from some fundamental problems in the fluid and statistical mechanics of microswimmers to the use of bacteria as propellers for micro-machines or as a "living" paint controlled by light.
A journey through connectomics: from manual tracing to the first fully automated basal ganglia connectomes
The "mind of the worm", the first electron microscopy-based connectome of C. elegans, was an early sign of where connectomics is headed, followed by a long time of little progress in a field held back by the immense manual effort required for data acquisition and analysis. This changed over the last few years with several technological breakthroughs, which allowed increases in data set sizes by several orders of magnitude. Brain tissue can now be imaged in 3D up to a millimeter in size at nanometer resolution, revealing tissue features from synapses to the mitochondria of all contained cells. These breakthroughs in acquisition technology were paralleled by a revolution in deep-learning segmentation techniques, that equally reduced manual analysis times by several orders of magnitude, to the point where fully automated reconstructions are becoming useful. Taken together, this gives neuroscientists now access to the first wiring diagrams of thousands of automatically reconstructed neurons connected by millions of synapses, just one line of program code away. In this talk, I will cover these developments by describing the past few years' technological breakthroughs and discuss remaining challenges. Finally, I will show the potential of automated connectomics for neuroscience by demonstrating how hypotheses in reinforcement learning can now be tackled through virtual experiments in synaptic wiring diagrams of the songbird basal ganglia.