← Back

3d Printed

Topic spotlight
TopicWorld Wide

3D printed

Discover seminars, jobs, and research tagged with 3D printed across World Wide.
6 curated items5 Seminars1 ePoster
Updated 7 months ago
6 items · 3D printed
6 results
SeminarOpen Source

“A Focus on 3D Printed Lenses: Rapid prototyping, low-cost microscopy and enhanced imaging for the life sciences”

Liam Rooney
University of Glasgow
May 21, 2025

High-quality glass lenses are commonplace in the design of optical instrumentation used across the biosciences. However, research-grade glass lenses are often costly, delicate and, depending on the prescription, can involve intricate and lengthy manufacturing - even more so in bioimaging applications. This seminar will outline 3D printing as a viable low-cost alternative for the manufacture of high-performance optical elements, where I will also discuss the creation of the world’s first fully 3D printed microscope and other implementations of 3D printed lenses. Our 3D printed lenses were generated using consumer-grade 3D printers and pose a 225x materials cost-saving compared to glass optics. Moreover, they can be produced in any lab or home environment and offer great potential for education and outreach. Following performance validation, our 3D printed optics were implemented in the production of a fully 3D printed microscope and demonstrated in histological imaging applications. We also applied low-cost fabrication methods to exotic lens geometries to enhance resolution and contrast across spatial scales and reveal new biological structures. Across these applications, our findings showed that 3D printed lenses are a viable substitute for commercial glass lenses, with the advantage of being relatively low-cost, accessible, and suitable for use in optical instruments. Combining 3D printed lenses with open-source 3D printed microscope chassis designs opens the doors for low-cost applications for rapid prototyping, low-resource field diagnostics, and the creation of cheap educational tools.

SeminarOpen SourceRecording

OpenFlexure

Joe Knapper
University of Bath
Jul 8, 2021

OpenFlexure is a 3D printed flexure translation stage, developed by a group at the Bath University. The stage is capable of sub-micron-scale motion, with very small drift over time. Which makes it quite good, among other things, for time-lapse protocols that need to be done over days/weeks time, and under space restricted areas, such as fume hoods.

SeminarOpen SourceRecording

Mobilefuge: A low-cost, portable, open source, 3D-printed centrifuge that can be used for purification of saliva samples for SARS-CoV2 detection

Chinna Devarapu
Munster Technological University, Cork, Ireland and Tyndall National Institute, Cork, Ireland.
Apr 22, 2021

We made a low-cost centrifuge that can be useful for carrying out low-cost LAMP based detection of SARS-Cov2 virus in saliva. The 3D printed centrifuge (Mobilefuge) is portable, robust, stable, safe, easy to build and operate. The Mobilefuge doesn’t require soldering or programming skills and can be built without any specialised equipment, yet practical enough for high throughput use. More importantly, Mobilefuge can be powered from widely available USB ports, including mobile phones and associated power supplies. This allows the Mobilefuge to be used even in off-grid and resource limited settings. Website: https://www.cappa.ie/chinna-devarapu/

SeminarPhysics of LifeRecording

Free-falling dynamically scaled models: Foraminifera as a test case

Matthew Walker
University of Lincoln
Apr 13, 2021

The settling speeds of small biological particles influence the distribution of organisms such as plants, corals, and phytoplankton, but these speeds are difficult to quantify without magnification. In this talk, I highlight my novel method,  using dynamic scaling principles and 3D printed models to solve this problem. Dynamic scaling involves creating models with differ in size to the original system and match the physical forces acting upon the model to the original system. I discuss the methodology behind the technique and show how it differs to previous works using dynamically scaled models. I show the flexibility of the technique and suggest how it can be applied to other free-falling particles (e.g. seeds and spores).

ePoster

Investigating the recovery of neonatal rats from compression spinal cord injury utilizing a novel 3D printed spacer model

Reggie Ridlen, Victoria Masters, Caitlin Wesley, Matthew Burke, Huyen Le, Luke Farrell, Kristine McGrath, Catherine Gorrie

FENS Forum 2024