Acetylcholine
acetylcholine
Dr. Fleur Zeldenrust
We are looking for a postdoctoral researcher to work on the Vidi project 'Top-down neuromodulation and bottom-up network computation, a computational study' and study the effects of neuromodulators in balanced networks. You will use cellular and behavioural data on the effects of dopamine, acetylcholine and serotonin in mouse barrel cortex gathered by our department over the past five years, to bridge the gap between single cell, network and behavioural effects. You will use the balanced network framework to study network activity under neuromodulation. In order to do this, you will develop a balanced network description of the barrel cortex, with realistic barrel cortex properties (see https://doi.org/10.1007/s12021-022-09576-5). Next, you will incorporate the cellular effects of dopamine, acetylcholine and serotonin that we have measured over the previous years (see https://doi.org/10.1093/gigascience/giy147 and https://doi.org/10.1101/2022.01.12.476007) into the network, and investigate their effects on overall network activity and behaviour. More particularly, through simulations and analytical derivations, you will research the effects of neuromodulators on the stability of the balanced state, synchrony, regularity and chaos. You will build on the single cell data, models and analysis methods available in our group, and your results will be incorporated into our group's further research to develop and validate machine learning and efficient coding models of (somatosensory) perception. We are therefore looking for a team player who can work well with our other group members and is willing to both learn from them and share their knowledge.
Dr. Melissa Caras
We are looking for a postdoctoral fellow to study neuromodulatory mechanisms supporting auditory perceptual learning in Mongolian gerbils. The successful applicant will measure and manipulate neuromodulatory release, and assess its impact on cortical activity in freely-moving animals engaged in auditory detection tasks. A variety of techniques will be used, including in vivo multichannel electrophysiology and pharmacology, fiber photometry, novel genetically-encoded fluorescent biosensors, chemogenetics and/or optogenetics. The candidate will be highly involved in all aspects of the research, from design to publication, and will additionally have the opportunity to mentor graduate and undergraduate students.
Jie Mei
The Wiring, Neuromodeling and Brain Lab at IT:U Interdisciplinary Transformation University Austria is offering 2 PhD positions in neuromodulation-aware artificial intelligence. We are interested in (1) the role of individual neuromodulators (e.g., dopamine, serotonin, and acetylcholine) in initiating and implementing diverse biological and cognitive functions, (2) how competition and cooperation among neuromodulators enrich single neuromodulator computations, and (3) how multi-neuromodulator dynamics can be translated into learning rules for more flexible, robust, and adaptive learning in artificial neural networks.
Dopamine Acetylcholine interactions
Dopamine and Acetylcholine waves in the striatum
Targeting thalamic circuits rescues motor and mood deficits in PD mice
Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
New tools for monitoring and manipulating neural circuits
Dr. Looger will present updates on a variety of molecular tools for studying & manipulating neural circuits & other preparations. Topics include genetically encoded calcium indicators (including the new ultra-fast jGCaMP8 variants), neurotransmitter sensors (improved versions for following glutamate, GABA, acetylcholine, serotonin), optogenetic effectors including the new “enhanced Magnets” dimerizers, AAV serotypes for retrograde labeling & altered tropism, probes for correlative light-electron microscopy, chemical gene switches, etc. He will make all his slides freely available - so don’t worry about hurriedly taking notes; instead focus on questions and ideas for collaboration. Please bring your suggestions for molecular tools that would be transformative for the field.
Acetylcholine modulation of short-term plasticity is critical to reliable long-term plasticity in hippocampal synapses
CA3-CA1 synapses in the hippocampus are the initial locus of episodic memory. The action of acetylcholine alters cellular excitability, modifies neuronal networks, and triggers secondary signaling that directly affects long-term plasticity (LTP) (the cellular underpinning of memory). It is therefore considered a critical regulator of learning and memory in the brain. Its action via M4 metabotropic receptors in the presynaptic terminal of the CA3 neurons and M1 metabotropic receptors in the postsynaptic spines of CA1 neurons produce rich dynamics across multiple timescales. We developed a model to describe the activation of postsynaptic M1 receptors that leads to IP3 production from membrane PIP2 molecules. The binding of IP3 to IP3 receptors in the endoplasmic reticulum (ER) ultimately causes calcium release. This calcium release from the ER activates potassium channels like the calcium-activated SK channels and alters different aspects of synaptic signaling. In an independent signaling cascade, M1 receptors also directly suppress SK channels and the voltage-activated KCNQ2/3 channels, enhancing post-synaptic excitability. In the CA3 presynaptic terminal, we model the reduction of the voltage sensitivity of voltage-gated calcium channels (VGCCs) and the resulting suppression of neurotransmitter release by the action of the M4 receptors. Our results show that the reduced initial release probability because of acetylcholine alters short-term plasticity (STP) dynamics. We characterize the dichotomy of suppressing neurotransmitter release from CA3 neurons and the enhanced excitability of the postsynaptic CA1 spine. Mechanisms underlying STP operate over a few seconds, while those responsible for LTP last for hours, and both forms of plasticity have been linked with very distinct functions in the brain. We show that the concurrent suppression of neurotransmitter release and increased sensitivity conserves neurotransmitter vesicles and enhances the reliability in plasticity. Our work establishes a relationship between STP and LTP coordinated by neuromodulation with acetylcholine.
Cholinergic modulation of the cerebellum
Many studies have investigated the major glutamatergic inputs to the cerebellum, mossy fibres and climbing fibres, however far less is known about its neuromodulatory inputs. In particular, anatomical studies have described cholinergic input to the cerebellum, yet little is known about its role(s). In this talk, I will present our recent findings which demonstrate that manipulating acetylcholine receptors in the cerebellum causes effects at both a cellular and behavioural level. Activating acetylcholine receptors alters the intrinsic properties and synaptic inputs of cerebellar output neurons, and blocking these receptors results in deficits in a range of behavioural tasks.
New tools for monitoring & manipulating cellular function
Dr. Looger will discuss reagents for tracking Ca2+, membrane potential ("voltage"), glutamate, GABA, acetylcholine, serotonin, dopamine, etc. He will also cover optogenetics tools and methods for correlative light/electron microscopy. They make all tools freely available to everyone and work to get them in the hands of people that have limited resources.
Acetylcholine dynamics in the basolateral amygdala during reward learning
State-dependent cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits. Zoom Meeting ID: 964 8138 3003 Contact host if you cannot connect.
State-dependent cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.
State-dependent regulation of cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.
Circuit mechanisms underlying the dynamic control of cortical processing by subcortical neuromodulators
Behavioral states such as arousal and attention can have profound effects on sensory processing, determining how – sometimes whether – a stimulus is processed. This state-dependence is believed to arise, at least in part, as a result of inputs to cortex from subcortical structures that release neuromodulators such as acetylcholine, noradrenaline, and serotonin, often non-synaptically. The mechanisms that underlie the interaction between these “wireless” non-synaptic signals and the “wired” cortical circuit are not well understood. Furthermore, neuromodulatory signaling is traditionally considered broad in its impact across cortex (within a species) and consistent in its form and function across species (at least in mammals). The work I will present approaches the challenge of understanding neuromodulatory action in the cortex from a number of angles: anatomy, physiology, pharmacology, and chemistry. The overarching goal of our effort is to elucidate the mechanisms behind local neuromodulation in the cortex of non-human primates, and to reveal differences in structure and function across cortical model systems.
The subcellular organization of excitation and inhibition underlying high-fidelity direction coding in the retina
Understanding how neural circuits in the brain compute information not only requires determining how individual inhibitory and excitatory elements of circuits are wired together, but also a detailed knowledge of their functional interactions. Recent advances in optogenetic techniques and mouse genetics now offer ways to specifically probe the functional properties of neural circuits with unprecedented specificity. Perhaps one of the most heavily interrogated circuits in the mouse brain is one in the retina that is involved in coding direction (reviewed by Mauss et al., 2017; Vaney et al., 2012). In this circuit, direction is encoded by specialized direction-selective (DS) ganglion cells (DSGCs), which respond robustly to objects moving in a ‘preferred’ direction but not in the opposite or ‘null’ direction (Barlow and Levick, 1965). We now know this computation relies on the coordination of three transmitter systems: glutamate, GABA and acetylcholine (ACh). In this talk, I will discuss the synaptic mechanisms that produce the spatiotemporal patterns of inhibition and excitation that are crucial for shaping directional selectivity. Special emphasis will be placed on the role of ACh, as it is unclear whether it is mediated by synaptic or non-synaptic mechanisms, which is in fact a central issue in the CNS. Barlow, H.B., and Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178, 477-504. Mauss, A.S., Vlasits, A., Borst, A., and Feller, M. (2017). Visual Circuits for Direction Selectivity. Annu Rev Neurosci 40, 211-230. Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194-208
Acetylcholine in amygdala does not encode outcome uncertainty
COSYNE 2022
Characterization of a novel missense mutation in the α2 subunit of the neuronal nicotinic acetylcholine receptor linked to sleep-related generalized seizures with cognitive deficit
FENS Forum 2024
Comparison of acetylcholine release in the mouse cerebral cortex in response to standard visual stimuli vs dynamic virtual reality environment
FENS Forum 2024
α5-containing nicotinic acetylcholine receptors are important modulators of aggressive and dominant-like behaviors in rodents and humans
FENS Forum 2024
Design, synthesis and pharmacological evaluation of pyrazole/tacrine derivatives as potential acetylcholinesterase inhibitors
FENS Forum 2024
Dopamine-acetylcholine interplay and neural activity motifs in the striatum: Insights from a mouse delayed-go reaching task
FENS Forum 2024
Expression and function of beta2-containing nicotinic acetylcholine receptors in specific neuronal populations in the prefrontal cortex
FENS Forum 2024
Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression
FENS Forum 2024
Investigating the role of α5 containing nicotinic acetylcholine receptors in eating disorders
FENS Forum 2024
Neuroprotective and antioxidant effects of oxotremorine‑M, a non‑selective muscarinic acetylcholine receptors agonist, in a cellular model of Alzheimer disease
FENS Forum 2024
Reelin modulates acetylcholine-induced calcium signals and posttranslational protein modifications
FENS Forum 2024
The region 35-HAEE-38 of alpha4 subunit plays a key role in the binding of alpha4beta2 nicotinic acetylcholine receptor to beta-amyloid
FENS Forum 2024
A role for acetylcholine in uncertain decision making
FENS Forum 2024
Role of nicotinic acetylcholine receptors expressed by cholinergic interneurons in the control of striatal activity
FENS Forum 2024
Striatal dopamine and acetylcholine signal distinct variables during perceptual decision-making
FENS Forum 2024
Unravelling the role of prefrontal α7 nicotinic acetylcholine receptors in inhibitory control in physiological and pathological contexts: A behavioral investigation using touchscreen technology
FENS Forum 2024