Action Learning
action learning
Dr Jonathan Tang
This position will focus on the neural mechanisms underlying action learning in mice. Scientifically the project aims to understand the neural circuits, activities and behavioral dynamics behind how animals learn what actions to take for reward. Dopaminergic systems and associated circuitries will be the focus of investigation. This lab integrates wireless inertial sensors, closed loop algorithms, optogenetics and neural recording to pursue this goal.
Visualising time in the human brain
We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.