← Back

Action Potentials

Topic spotlight
TopicWorld Wide

action potentials

Discover seminars, jobs, and research tagged with action potentials across World Wide.
16 curated items15 Seminars1 Position
Updated 1 day ago
16 items · action potentials
16 results
PositionNeuroscience

Jean-Pascal Pfister

Theoretical Neuroscience Group, Department of Physiology, University of Bern
University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
Dec 5, 2025

The Theoretical Neuroscience Group of the University of Bern is seeking applications for a PhD position, funded by a Swiss National Science Foundation grant titled “Why Spikes?”. This project aims at answering a nearly century-old question in Neuroscience: “What are spikes good for?”. Indeed, since the discovery of action potentials by Lord Adrian in 1926, it has remained largely unknown what the benefits of spiking neurons are, when compared to analog neurons. Traditionally, it has been argued that spikes are good for long-distance communication or for temporally precise computation. However, there is no systematic study that quantitatively compares the communication as well as the computational benefits of spiking neuron w.r.t analog neurons. The aim of the project is to systematically quantify the benefits of spiking at various levels by developing and analyzing appropriate mathematical models. The PhD student will be supervised by Prof. Jean-Pascal Pfister (Theoretical Neuroscience Group, Department of Physiology, University of Bern). The project will involve close collaborations within a highly motivated team as well as regular exchange of ideas with the other theory groups at the institute.

SeminarNeuroscience

Low intensity rTMS: age dependent effects, and mechanisms underlying neural plasticity

Ann Lohof
Sorbonne Université, Institut de Biologie Paris Seine
Sep 18, 2025

Neuroplasticity is essential for the establishment and strengthening of neural circuits. Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical excitability and shows promise in the treatment of some neurological disorders. Low intensity magnetic stimulation (LI-rTMS), which does not directly elicit action potentials in the stimulated neurons, have also shown some therapeutic effects, and it is important to determine the biological mechanisms underlying the effects of these low intensity magnetic fields, such as would occur in the regions surrounding the central high-intensity focus of rTMS. Our team has used a focal low-intensity (10mT) magnetic stimulation approach to address some of these questions and to identify cellular mechanisms. I will present several studies from our laboratory, addressing (1) effects of LIrTMS on neuronal activity and excitability ; and (2) neuronal morphology and post-lesion repair. The ensemble of our results indicate that the effects of LI-rTMS depend upon the stimulation pattern, the age of the animal, and the presence of cellular magnetoreceptors.

SeminarNeuroscience

Why spikes?

Romaine Brette
Institut de la Vision
May 30, 2023

On a fast timescale, neurons mostly interact by short, stereotypical electrical impulses or spikes. Why? A common answer is that spikes are useful for long-distance communication, to avoid alterations while traveling along axons. But as it turns out, spikes are seen in many places outside neurons: in the heart, in muscles, in plants and even in protists. From these examples, it appears that action potentials mediate some form of coordinated action, a timed event. From this perspective, spikes should not be seen simply as noisy implementations of underlying continuous signals (a sort of analog-to-digital conversion), but rather as events or actions. I will give a number of examples of functional spike-based interactions in living systems.

SeminarNeuroscienceRecording

Silences, Spikes and Bursts: Three-Part Knot of the Neural Code

Richard Naud
University of Ottawa
Feb 28, 2023

When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labeling action potentials emitted at a particularly high frequency with a metonym – bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. In this talk, I will discuss the implications of seeing the neural code as having three syllables: silences, spikes and bursts. In particular, I will describe recent theoretical and experimental results that implicate bursting in the implementation of top-down attention and the coordination of learning.

SeminarNeuroscience

Setting network states via the dynamics of action potential generation

Susanne Schreiber
Humboldt University Berlin, Germany
Oct 4, 2022

To understand neural computation and the dynamics in the brain, we usually focus on the connectivity among neurons. In contrast, the properties of single neurons are often thought to be negligible, at least as far as the activity of networks is concerned. In this talk, I will contradict this notion and demonstrate how the biophysics of action-potential generation can have a decisive impact on network behaviour. Our recent theoretical work shows that, among regularly firing neurons, the somewhat unattended homoclinic type (characterized by a spike onset via a saddle homoclinic orbit bifurcation) particularly stands out: First, spikes of this type foster specific network states - synchronization in inhibitory and splayed-out/frustrated states in excitatory networks. Second, homoclinic spikes can easily be induced by changes in a variety of physiological parameters (like temperature, extracellular potassium, or dendritic morphology). As a consequence, such parameter changes can even induce switches in network states, solely based on a modification of cellular voltage dynamics. I will provide first experimental evidence and discuss functional consequences of homoclinic spikes for the design of efficient pattern-generating motor circuits in insects as well as for mammalian pathologies like febrile seizures. Our analysis predicts an interesting role for homoclinic action potentials as an integral part of brain dynamics in both health and disease.

SeminarNeuroscienceRecording

Retinal responses to natural inputs

Fred Rieke
University of Washington
Apr 17, 2022

The research in my lab focuses on sensory signal processing, particularly in cases where sensory systems perform at or near the limits imposed by physics. Photon counting in the visual system is a beautiful example. At its peak sensitivity, the performance of the visual system is limited largely by the division of light into discrete photons. This observation has several implications for phototransduction and signal processing in the retina: rod photoreceptors must transduce single photon absorptions with high fidelity, single photon signals in photoreceptors, which are only 0.03 – 0.1 mV, must be reliably transmitted to second-order cells in the retina, and absorption of a single photon by a single rod must produce a noticeable change in the pattern of action potentials sent from the eye to the brain. My approach is to combine quantitative physiological experiments and theory to understand photon counting in terms of basic biophysical mechanisms. Fortunately there is more to visual perception than counting photons. The visual system is very adept at operating over a wide range of light intensities (about 12 orders of magnitude). Over most of this range, vision is mediated by cone photoreceptors. Thus adaptation is paramount to cone vision. Again one would like to understand quantitatively how the biophysical mechanisms involved in phototransduction, synaptic transmission, and neural coding contribute to adaptation.

SeminarNeuroscienceRecording

Turning spikes to space: The storage capacity of tempotrons with plastic synaptic dynamics

Robert Guetig
Charité – Universitätsmedizin Berlin & BIH
Mar 8, 2022

Neurons in the brain communicate through action potentials (spikes) that are transmitted through chemical synapses. Throughout the last decades, the question how networks of spiking neurons represent and process information has remained an important challenge. Some progress has resulted from a recent family of supervised learning rules (tempotrons) for models of spiking neurons. However, these studies have viewed synaptic transmission as static and characterized synaptic efficacies as scalar quantities that change only on slow time scales of learning across trials but remain fixed on the fast time scales of information processing within a trial. By contrast, signal transduction at chemical synapses in the brain results from complex molecular interactions between multiple biochemical processes whose dynamics result in substantial short-term plasticity of most connections. Here we study the computational capabilities of spiking neurons whose synapses are dynamic and plastic, such that each individual synapse can learn its own dynamics. We derive tempotron learning rules for current-based leaky-integrate-and-fire neurons with different types of dynamic synapses. Introducing ordinal synapses whose efficacies depend only on the order of input spikes, we establish an upper capacity bound for spiking neurons with dynamic synapses. We compare this bound to independent synapses, static synapses and to the well established phenomenological Tsodyks-Markram model. We show that synaptic dynamics in principle allow the storage capacity of spiking neurons to scale with the number of input spikes and that this increase in capacity can be traded for greater robustness to input noise, such as spike time jitter. Our work highlights the feasibility of a novel computational paradigm for spiking neural circuits with plastic synaptic dynamics: Rather than being determined by the fixed number of afferents, the dimensionality of a neuron's decision space can be scaled flexibly through the number of input spikes emitted by its input layer.

SeminarNeuroscienceRecording

NaV Long-term Inactivation Regulates Adaptation in Place Cells and Depolarization Block in Dopamine Neurons

Carmen Canavier
LSU Health Sciences Center, New Orleans
Feb 8, 2022

In behaving rodents, CA1 pyramidal neurons receive spatially-tuned depolarizing synaptic input while traversing a specific location within an environment called its place. Midbrain dopamine neurons participate in reinforcement learning, and bursts of action potentials riding a depolarizing wave of synaptic input signal rewards and reward expectation. Interestingly, slice electrophysiology in vitro shows that both types of cells exhibit a pronounced reduction in firing rate (adaptation) and even cessation of firing during sustained depolarization. We included a five state Markov model of NaV1.6 (for CA1) and NaV1.2 (for dopamine neurons) respectively, in computational models of these two types of neurons. Our simulations suggest that long-term inactivation of this channel is responsible for the adaptation in CA1 pyramidal neurons, in response to triangular depolarizing current ramps. We also show that the differential contribution of slow inactivation in two subpopulations of midbrain dopamine neurons can account for their different dynamic ranges, as assessed by their responses to similar depolarizing ramps. These results suggest long-term inactivation of the sodium channel is a general mechanism for adaptation.

SeminarNeuroscience

Reflex Regulation of Innate Immunity

Kevin Tracey
Northwell Health
Nov 7, 2021

Reflex circuits in the nervous system integrate changes in the environment with physiology. Compact clusters of brain neuron cell bodies, termed nuclei, are essential for receiving sensory input and for transmitting motor outputs to the body. These nucelii are critical relay stations which process incoming information and convert these signals to outgoing action potentials which regulate immune system functions. Thus, reflex neural circuits maintain parameters of immunological physiology within a narrow range optimal for health. Advances in neuroscience and immunology using optogenetics, pharmacogenetics, and functional mapping offer a new understanding of the importance of neural circuitry underlying immunity, and offer direct paths to new therapies.

SeminarNeuroscienceRecording

Dancing to a Different Tune: TANGO Gives Hope for Dravet Syndrome

Lori Isom
University of Michigan
Oct 19, 2021

The long-term goal of our research is to understand the mechanisms of SUDEP, defined as Sudden, Unexpected, witnessed or unwitnessed, nontraumatic and non-drowning Death in patients with EPilepsy, excluding cases of documented status epilepticus. The majority of SUDEP patients die during sleep. SUDEP is the most devastating consequence of epilepsy, yet little is understood about its causes and no biomarkers exist to identify at risk patients. While SUDEP accounts for 7.5-20% of all epilepsy deaths, SUDEP risk in the genetic epilepsies varies with affected genes. Patients with ion channel gene variants have the highest SUDEP risk. Indirect evidence variably links SUDEP to seizure-induced apnea, pulmonary edema, dysregulation of cerebral circulation, autonomic dysfunction, and cardiac arrhythmias. Arrhythmias may be primary or secondary to hormonal or metabolic changes, or autonomic discharges. When SUDEP is compared to Sudden Cardiac Death secondary to Long QT Syndrome, especially to LQT3 linked to variants in the voltage-gated sodium channel (VGSC) gene SCN5A, there are parallels in the circumstances of death. To gain insight into SUDEP mechanisms, our approach has focused on channelopathies with high SUDEP incidence. One such disorder is Dravet syndrome (DS), a devastating form of developmental and epileptic encephalopathy (DEE) characterized by multiple pharmacoresistant seizure types, intellectual disability, ataxia, and increased mortality. While all patients with epilepsy are at risk for SUDEP, DS patients may have the highest risk, up to 20%, with a mean age at SUDEP of 4.6 years. Over 80% of DS is caused by de novo heterozygous loss-of-function (LOF) variants in SCN1A, encoding the VGSC Nav1.1  subunit, resulting in haploinsufficiency. A smaller cohort of patients with DS or a more severe DEE have inherited, homozygous LOF variants in SCN1B, encoding the VGSC 1/1B non-pore-forming subunits. A related DEE, Early Infantile EE (EIEE) type 13, is linked to de novo heterozygous gain-of-function variants in SCN8A, encoding the VGSC Nav1.6. VGSCs underlie the rising phase and propagation of action potentials in neurons and cardiac myocytes. SCN1A, SCN8A, and SCN1B are expressed in both the heart and brain of humans and mice. Because of this, we proposed that cardiac arrhythmias contribute to the mechanism of SUDEP in DEE. We have taken a novel approach to the development of therapeutics for DS in collaboration with Stoke Therapeutics. We employed Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, non-productive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model. We identified antisense oligonucleotides (ASOs) that specifically increase the expression of productive Scn1a transcript in human and mouse cell lines, as well as in mouse brain. We showed that a single intracerebroventricular dose of a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and SUDEP in the F1:129S-Scn1a+/- x C57BL/6J mouse model of DS. Increased expression of productive Scn1a transcript and NaV1.1 protein were confirmed in brains of treated mice. Our results suggest that TANGO may provide a unique, gene-specific approach for the treatment of DS.

SeminarNeuroscienceRecording

Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses

Willem Wybo
Morrison lab, Forschungszentrum Jülich, Germany
Jun 9, 2021

There is little consensus on the level of spatial complexity at which dendrites operate. On the one hand, emergent evidence indicates that synapses cluster at micrometer spatial scales. On the other hand, most modelling and network studies ignore dendrites altogether. This dichotomy raises an urgent question: what is the smallest relevant spatial scale for understanding dendritic computation? We have developed a method to construct compartmental models at any level of spatial complexity. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models. Thus, we are able to systematically construct passive as well as active dendrite models at varying degrees of spatial complexity. We evaluate which elements of the dendritic computational repertoire are captured by these models. We show that many canonical elements of the dendritic computational repertoire can be reproduced with few compartments. For instance, for a model to behave as a two-layer network, it is sufficient to fit a reduced model at the soma and at locations at the dendritic tips. In the basal dendrites of an L2/3 pyramidal model, we reproduce the backpropagation of somatic action potentials (APs) with a single dendritic compartment at the tip. Further, we obtain the well-known Ca-spike coincidence detection mechanism in L5 Pyramidal cells with as few as eleven compartments, the requirement being that their spacing along the apical trunk supports AP backpropagation. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Consequently, when the average conductance load on distal synapses is constant, the dendritic tree can be simplified while appropriately decreasing synaptic weights. When the conductance level fluctuates strongly, for instance through a-priori unpredictable fluctuations in NMDA activation, a constant weight rescale factor cannot be found, and the dendrite cannot be simplified. We have created an open source Python toolbox (NEAT - https://neatdend.readthedocs.io/en/latest/) that automatises the simplification process. A NEST implementation of the reduced models, currently under construction, will enable the simulation of few-compartment models in large-scale networks, thus bridging the gap between cellular and network level neuroscience.

SeminarNeuroscience

Capacitance clamp - artificial capacitance in biological neurons via dynamic clamp

Paul Pfeiffer
Schreiber lab, Humboldt University Berlin, Germany
Jun 9, 2021

A basic time scale in neural dynamics from single cells to the network level is the membrane time constant - set by a neuron’s input resistance and its capacitance. Interestingly, the membrane capacitance appears to be more dynamic than previously assumed with implications for neural function and pathology. Indeed, altered membrane capacitance has been observed in reaction to physiological changes like neural swelling, but also in ageing and Alzheimer's disease. Importantly, according to theory, even small changes of the capacitance can affect neuronal signal processing, e.g. increase network synchronization or facilitate transmission of high frequencies. In experiment, robust methods to modify the capacitance of a neuron have been missing. Here, we present the capacitance clamp - an electrophysiological method for capacitance control based on an unconventional application of the dynamic clamp. In its original form, dynamic clamp mimics additional synaptic or ionic conductances by injecting their respective currents. Whereas a conductance directly governs a current, the membrane capacitance determines how fast the voltage responds to a current. Accordingly, capacitance clamp mimics an altered capacitance by injecting a dynamic current that slows down or speeds up the voltage response (Fig 1 A). For the required dynamic current, the experimenter only has to specify the original cell and the desired target capacitance. In particular, capacitance clamp requires no detailed model of present conductances and thus can be applied in every excitable cell. To validate the capacitance clamp, we performed numerical simulations of the protocol and applied it to modify the capacitance of cultured neurons. First, we simulated capacitance clamp in conductance based neuron models and analysed impedance and firing frequency to verify the altered capacitance. Second, in dentate gyrus granule cells from rats, we could reliably control the capacitance in a range of 75 to 200% of the original capacitance and observed pronounced changes in the shape of the action potentials: increasing the capacitance reduced after-hyperpolarization amplitudes and slowed down repolarization. To conclude, we present a novel tool for electrophysiology: the capacitance clamp provides reliable control over the capacitance of a neuron and thereby opens a new way to study the temporal dynamics of excitable cells.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Kenneth Harris, György Buzsáki, Terrence Sejnowski
May 12, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Carl Petersen, Bruce McNaughton, Sonja Grün
May 11, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Jennifer Li and Drew Robson, Thomas Mrsic-Flogel, David McCormick
May 10, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.