Action Selection
action selection
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
Decoding mental conflict between reward and curiosity in decision-making
Humans and animals are not always rational. They not only rationally exploit rewards but also explore an environment owing to their curiosity. However, the mechanism of such curiosity-driven irrational behavior is largely unknown. Here, we developed a decision-making model for a two-choice task based on the free energy principle, which is a theory integrating recognition and action selection. The model describes irrational behaviors depending on the curiosity level. We also proposed a machine learning method to decode temporal curiosity from behavioral data. By applying it to rat behavioral data, we found that the rat had negative curiosity, reflecting conservative selection sticking to more certain options and that the level of curiosity was upregulated by the expected future information obtained from an uncertain environment. Our decoding approach can be a fundamental tool for identifying the neural basis for reward–curiosity conflicts. Furthermore, it could be effective in diagnosing mental disorders.
Off-policy learning in the basal ganglia
I will discuss work with Jack Lindsey modeling reinforcement learning for action selection in the basal ganglia. I will argue that the presence of multiple brain regions, in addition to the basal ganglia, that contribute to motor control motivates the need for an off-policy basal ganglia learning algorithm. I will then describe a biological implementation of such an algorithm that predicts tuning of dopamine neurons to a quantity we call "action surprise," in addition to reward prediction error. In the same model, an implementation of learning from a motor efference copy also predicts a novel solution to the problem of multiplexing feedforward and efference-related striatal activity. The solution exploits the difference between D1 and D2-expressing medium spiny neurons and leads to predictions about striatal dynamics.
Beyond Volition
Voluntary actions are actions that agents choose to make. Volition is the set of cognitive processes that implement such choice and initiation. These processes are often held essential to modern societies, because they form the cognitive underpinning for concepts of individual autonomy and individual responsibility. Nevertheless, psychology and neuroscience have struggled to define volition, and have also struggled to study it scientifically. Laboratory experiments on volition, such as those of Libet, have been criticised, often rather naively, as focussing exclusively on meaningless actions, and ignoring the factors that make voluntary action important in the wider world. In this talk, I will first review these criticisms, and then look at extending scientific approaches to volition in three directions that may enrich scientific understanding of volition. First, volition becomes particularly important when the range of possible actions is large and unconstrained - yet most experimental paradigms involve minimal response spaces. We have developed a novel paradigm for eliciting de novo actions through verbal fluency, and used this to estimate the elusive conscious experience of generativity. Second, volition can be viewed as a mechanism for flexibility, by promoting adaptation of behavioural biases. This view departs from the tradition of defining volition by contrasting internally-generated actions with externally-triggered actions, and instead links volition to model-based reinforcement learning. By using the context of competitive games to re-operationalise the classic Libet experiment, we identified a form of adaptive autonomy that allows agents to reduce biases in their action choices. Interestingly, this mechanism seems not to require explicit understanding and strategic use of action selection rules, in contrast to classical ideas about the relation between volition and conscious, rational thought. Third, I will consider volition teleologically, as a mechanism for achieving counterfactual goals through complex problem-solving. This perspective gives a key role in mediating between understanding and planning on the one hand, and instrumental action on the other hand. Taken together, these three cognitive phenomena of generativity, flexibility, and teleology may partly explain why volition is such an important cognitive function for organisation of human behaviour and human flourishing. I will end by discussing how this enriched view of volition can relate to individual autonomy and responsibility.
Learning in/about/from the basal ganglia
The basal ganglia are a collection of brain areas that are connected by a variety of synaptic pathways and are a site of significant reward-related dopamine release. These properties suggest a possible role for the basal ganglia in action selection, guided by reinforcement learning. In this talk, I will discuss a framework for how this function might be performed and computational results using an upward mapping to identify putative low-dimensional control ensembles that may be involved in tuning decision policy. I will also present some recent experimental results and theory – related to effects of extracellular ion dynamics -- that run counter to the classical view of basal ganglia pathways and suggest a new interpretation of certain aspects of this framework. For those not so interested in the basal ganglia, I hope that the upward mapping approach and impact of extracellular ion dynamics will nonetheless be of interest!
Network dynamics in the basal ganglia and possible implications for Parkinson’s disease
The basal ganglia are a collection of brain areas that are connected by a variety of synaptic pathways and are a site of significant reward-related dopamine release. These properties suggest a possible role for the basal ganglia in action selection, guided by reinforcement learning. In this talk, I will discuss a framework for how this function might be performed. I will also present some recent experimental results and theory that call for a re-evaluation of certain aspects of this framework. Next, I will turn to the changes in basal ganglia activity observed to occur with the dopamine depletion associated with Parkinson’s disease. I will discuss some of the potential functional implications of some of these changes and, if time permits, will conclude with some new results that focus on delta oscillations under dopamine depletion.
Structures in space and time - Hierarchical network dynamics in the amygdala
In addition to its role in the learning and expression of conditioned behavior, the amygdala has long been implicated in the regulation of persistent states, such as anxiety and drive. Yet, it is not evident what projections of the neuronal activity capture the functional role of the network across such different timescales, specifically when behavior and neuronal space are complex and high-dimensional. We applied a data-driven dynamical approach for the analysis of calcium imaging data from the basolateral amygdala, collected while mice performed complex, self-paced behaviors, including spatial exploration, free social interaction, and goal directed actions. The seemingly complex network dynamics was effectively described by a hierarchical, modular structure, that corresponded to behavior on multiple timescales. Our results describe the response of the network activity to perturbations along different dimensions and the interplay between slow, state-like representation and the fast processing of specific events and actions schemes. We suggest hierarchical dynamical models offer a unified framework to capture the involvement of the amygdala in transitions between persistent states underlying such different functions as sensory associative learning, action selection and emotional processing. * Work done in collaboration with Jan Gründemann, Sol Fustinana, Alejandro Tsai and Julien Courtin (@theLüthiLab)
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans – which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.