Activity States
activity states
NMC4 Keynote: A network perspective on cognitive effort
Cognitive effort has long been an important explanatory factor in the study of human behavior in health and disease. Yet, the biophysical nature of cognitive effort remains far from understood. In this talk, I will offer a network perspective on cognitive effort. I will begin by canvassing a recent perspective that casts cognitive effort in the framework of network control theory, developed and frequently used in systems engineering. The theory describes how much energy is required to move the brain from one activity state to another, when activity is constrained to pass along physical pathways in a connectome. I will then turn to empirical studies that link this theoretical notion of energy with cognitive effort in a behaviorally demanding task, and with a metabolic notion of energy as accessible to FDG-PET imaging. Finally, I will ask how this structurally-constrained activity flow can provide us with insights about the brain’s non-equilibrium nature. Using a general tool for quantifying entropy production in macroscopic systems, I will provide evidence to suggest that states of marked cognitive effort are also states of greater entropy production. Collectively, the work I discuss offers a complementary view of cognitive effort as a dynamical process occurring atop a complex network.
An in-silico framework to study the cholinergic modulation of the neocortex
Neuromodulators control information processing in cortical microcircuits by regulating the cellular and synaptic physiology of neurons. Computational models and detailed simulations of neocortical microcircuitry offer a unifying framework to analyze the role of neuromodulators on network activity. In the present study, to get a deeper insight in the organization of the cortical neuropil for modeling purposes, we quantify the fiber length per cortical volume and the density of varicosities for catecholaminergic, serotonergic and cholinergic systems using immunocytochemical staining and stereological techniques. The data obtained are integrated into a biologically detailed digital reconstruction of the rodent neocortex (Markram et al, 2015) in order to model the influence of modulatory systems on the activity of the somatosensory cortex neocortical column. Simulations of ascending modulation of network activity in our model predict the effects of increasing levels of neuromodulators on diverse neuron types and synapses and reveal a spectrum of activity states. Low levels of neuromodulation drive microcircuit activity into slow oscillations and network synchrony, whereas high neuromodulator concentrations govern fast oscillations and network asynchrony. The models and simulations thus provide a unifying in silico framework to study the role of neuromodulators in reconfiguring network activity.
Advances in Computational Psychiatry: Understanding (cognitive) control as a network process
The human brain is a complex organ characterized by heterogeneous patterns of interconnections. Non-invasive imaging techniques now allow for these patterns to be carefully and comprehensively mapped in individual humans, paving the way for a better understanding of how wiring supports cognitive processes. While a large body of work now focuses on descriptive statistics to characterize these wiring patterns, a critical open question lies in how the organization of these networks constrains the potential repertoire of brain dynamics. In this talk, I will describe an approach for understanding how perturbations to brain dynamics propagate through complex wiring patterns, driving the brain into new states of activity. Drawing on a range of disciplinary tools – from graph theory to network control theory and optimization – I will identify control points in brain networks and characterize trajectories of brain activity states following perturbation to those points. Finally, I will describe how these computational tools and approaches can be used to better understand the brain's intrinsic control mechanisms and their alterations in psychiatric conditions.
Accounting for visual cortex variability with distributed neural activity states
COSYNE 2023
Closed-loop electrical microstimulation to create neural population activity states
COSYNE 2025