Actuation
actuation
New prospects in shape morphing sheets: unexplored pathways, 4D printing, and autonomous actuation
Living organisms have mastered the dynamic control of stresses within sheets to induce shape transformation and locomotion. For instance, the spatiotemporal pattern of action potential in a heart yields a dynamical stress field leading to shape changes and biological function. Such structures inspired the development of theoretical tools and responsive materials alike. Yet, present attempts to mimic their rich dynamics and phenomenology in autonomous synthetic matter are still very limited. In this talk, I will present several complementing innovations toward this goal: novel shaping mechanisms that were overlooked by previous research, new fabrication techniques for programmable matter via 4D printing of gel structures, and most prominently, the first autonomous shape morphing membranes. The dynamical control over the geometry of the material is a prevalent theme in all of these achievements. In particular, the latter system demonstrates localized deformations, induced by a pattern-forming chemical reaction, that prescribe the patterns of curvature, leading to global shape evolution. Together, these developments present a route for modeling and producing fully autonomous soft membranes mimicking some of the locomotive capabilities of living organisms.
Driving Soft Materials with Magnetic Fields
Magnetic fields exert controllable forces that generate microscopic actuation and locomotion in soft materials with superparamagnetic or ferromagnetic components. I will describe the shape changes and materials parameters required to drive and direct matter including filaments, membranes and hydrogels with magnetic components using precessing magnetic fields
Examining the impact of biomechanical actuation on neural representations for embodied control
COSYNE 2025