Adversarial
adversarial collaboration
Using Adversarial Collaboration to Harness Collective Intelligence
There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.
The 3 Cs: Collaborating to Crack Consciousness
Every day when we fall asleep we lose consciousness, we are not there. And then, every morning, when we wake up, we regain it. What mechanisms give rise to consciousness, and how can we explain consciousness in the realm of the physical world of atoms and matter? For centuries, philosophers and scientists have aimed to crack this mystery. Much progress has been made in the past decades to understand how consciousness is instantiated in the brain, yet critical questions remain: can we develop a consciousness meter? Are computers conscious? What about other animals and babies? We have embarked in a large-scale, multicenter project to test, in the context of an open science, adversarial collaboration, two of the most prominent theories: Integrated information theory (IIT) and Global Neuronal Workspace (GNW) theory. We are collecting over 500 datasets including invasive and non-invasive recordings of the human brain, i.e.. fMRI, MEG and ECoG. We hope this project will enable theory-driven discoveries and further explorations that will help us better understand how consciousness fits inside the human brain.