Analogical Comparison
analogical comparison
Structure-mapping in Human Learning
Across species, humans are uniquely able to acquire deep relational systems of the kind needed for mathematics, science, and human language. Analogical comparison processes are a major contributor to this ability. Analogical comparison engages a structure-mapping process (Gentner, 1983) that fosters learning in at least three ways: first, it highlights common relational systems and thereby promotes abstraction; second, it promotes inferences from known situations to less familiar situations; and, third, it reveals potentially important differences between examples. In short, structure-mapping is a domain-general learning process by which abstract, portable knowledge can arise from experience. It is operative from early infancy on, and is critical to the rapid learning we see in human children. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning.
Using Developmental Trajectories to Understand Change in Children’s Analogical Reasoning
Analogical reasoning is a complex ‘high-level’ cognitive process characterised by making inferences based on analogical comparisons. As with other high-level processes, development takes place over a protracted time period and believed to result from changes in multiple ‘lower-level’ systems. In the case of analogical reasoning, changes in systems responsible for conceptual knowledge, task knowledge, inhibition, and working memory have all been causally implicated in development. Whilst there is evidence that each of these systems contributes to development, what the relative contribution of each across development is, and how they interact with each, remain largely unanswered questions. In this presentation, I will describe how cross-sectional trajectory analysis can be used as a complementary method to shed light on these questions.