Anxiety Disorders
anxiety disorders
Decoding stress vulnerability
Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.
Brain and behavioural impacts of early life adversity
Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.
Neuromodulation of sleep integrity
The arousal construct underlies a spectrum of behaviors that include sleep, exploration, feeding, sexual activity and adaptive stress. Pathological arousal conditions include stress, anxiety disorders, and addiction. The dynamics between arousal state transitions are modulated by norepinephrine neurons in the locus coeruleus, histaminergic neurons in the hypothalamus, dopaminergic neurons in the mesencephalon and cholinergic neurons in the basal forebrain. The hypocretin/orexin system in the lateral hypothalamus I will also present a new mechanism underlying sleep fragmentation during aging. Hcrt neurons are hyperexcitable in aged mice. We identify a potassium conductance known as the M-current, as a critical player in maintaining excitability of Hcrt neurons. Genetic disruption of KCNQ channels in Hcrt neurons of young animals results in sleep fragmentation. In contrast, treatment of aged animals with a KCNQ channel opener restores sleep/wake architecture. These data point to multiple circuits modulating sleep integrity across lifespan.
fMRI of cognitive reappraisal, acceptance, and suppression emotion regulation strategies in basic and clinically applied contexts
The ability to effectively regulate emotions is a fundamental skill related to physical and psychological health. In this talk, I will present behavioral and fMRI data from several different studies that examined cognitive reappraisal, acceptance, and suppression emotion regulation strategies in healthy controls participants and in the context of randomized trials of cognitive behavioral therapy, mindfulness- based stress reduction, and aerobic exercise as interventions for adults with anxiety disorders. We will also examine the implementation of different types of functional connectivity analytic approaches to probe intervention-related brain mechanism changes.
Effects of safety instructions on fear extinction and extinction retrieval in patients with anxiety disorders
FENS Forum 2024