Applications
applications
Computational bio-imaging via inverse scattering
Optical imaging is a major research tool in the basic sciences, and is the only imaging modality that routinely enables non-ionized imaging with subcellular spatial resolutions and high imaging speeds. In biological imaging applications, however, optical imaging is limited by tissue scattering to short imaging depths. This prevents large-scale bio-imaging by allowing visualization of only the outer superficial layers of an organism, or specific components isolated from within the organism and prepared in-vitro.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
FLUXSynID: High-Resolution Synthetic Face Generation for Document and Live Capture Images
Synthetic face datasets are increasingly used to overcome the limitations of real-world biometric data, including privacy concerns, demographic imbalance, and high collection costs. However, many existing methods lack fine-grained control over identity attributes and fail to produce paired, identity-consistent images under structured capture conditions. In this talk, I will present FLUXSynID, a framework for generating high-resolution synthetic face datasets with user-defined identity attribute distributions and paired document-style and trusted live capture images. The dataset generated using FLUXSynID shows improved alignment with real-world identity distributions and greater diversity compared to prior work. I will also discuss how FLUXSynID’s dataset and generation tools can support research in face recognition and morphing attack detection (MAD), enhancing model robustness in both academic and practical applications.
Open SPM: A Modular Framework for Scanning Probe Microscopy
OpenSPM aims to democratize innovation in the field of scanning probe microscopy (SPM), which is currently dominated by a few proprietary, closed systems that limit user-driven development. Our platform includes a high-speed OpenAFM head and base optimized for small cantilevers, an OpenAFM controller, a high-voltage amplifier, and interfaces compatible with several commercial AFM systems such as the Bruker Multimode, Nanosurf DriveAFM, Witec Alpha SNOM, Zeiss FIB-SEM XB550, and Nenovision Litescope. We have created a fully documented and community-driven OpenSPM platform, with training resources and sourcing information, which has already enabled the construction of more than 15 systems outside our lab. The controller is integrated with open-source tools like Gwyddion, HDF5, and Pycroscopy. We have also engaged external companies, two of which are integrating our controller into their products or interfaces. We see growing interest in applying parts of the OpenSPM platform to related techniques such as correlated microscopy, nanoindentation, and scanning electron/confocal microscopy. To support this, we are developing more generic and modular software, alongside a structured development workflow. A key feature of the OpenSPM system is its Python-based API, which makes the platform fully scriptable and ideal for AI and machine learning applications. This enables, for instance, automatic control and optimization of PID parameters, setpoints, and experiment workflows. With a growing contributor base and industry involvement, OpenSPM is well positioned to become a global, open platform for next-generation SPM innovation.
“Development and application of gaze control models for active perception”
Gaze shifts in humans serve to direct high-resolution vision provided by the fovea towards areas in the environment. Gaze can be considered a proxy for attention or indicator of the relative importance of different parts of the environment. In this talk, we discuss the development of generative models of human gaze in response to visual input. We discuss how such models can be learned, both using supervised learning and using implicit feedback as an agent interacts with the environment, the latter being more plausible in biological agents. We also discuss two ways such models can be used. First, they can be used to improve the performance of artificial autonomous systems, in applications such as autonomous navigation. Second, because these models are contingent on the human’s task, goals, and/or state in the context of the environment, observations of gaze can be used to infer information about user intent. This information can be used to improve human-machine and human robot interaction, by making interfaces more anticipative. We discuss example applications in gaze-typing, robotic tele-operation and human-robot interaction.
An Ecological and Objective Neural Marker of Implicit Unfamiliar Identity Recognition
We developed a novel paradigm measuring implicit identity recognition using Fast Periodic Visual Stimulation (FPVS) with EEG among 16 students and 12 police officers with normal face processing abilities. Participants' neural responses to a 1-Hz tagged oddball identity embedded within a 6-Hz image stream revealed implicit recognition with high-quality mugshots but not CCTV-like images, suggesting optimal resolution requirements. Our findings extend previous research by demonstrating that even unfamiliar identities can elicit robust neural recognition signatures through brief, repeated passive exposure. This approach offers potential for objective validation of face processing abilities in forensic applications, including assessment of facial examiners, Super-Recognisers, and eyewitnesses, potentially overcoming limitations of traditional behavioral assessment methods.
“A Focus on 3D Printed Lenses: Rapid prototyping, low-cost microscopy and enhanced imaging for the life sciences”
High-quality glass lenses are commonplace in the design of optical instrumentation used across the biosciences. However, research-grade glass lenses are often costly, delicate and, depending on the prescription, can involve intricate and lengthy manufacturing - even more so in bioimaging applications. This seminar will outline 3D printing as a viable low-cost alternative for the manufacture of high-performance optical elements, where I will also discuss the creation of the world’s first fully 3D printed microscope and other implementations of 3D printed lenses. Our 3D printed lenses were generated using consumer-grade 3D printers and pose a 225x materials cost-saving compared to glass optics. Moreover, they can be produced in any lab or home environment and offer great potential for education and outreach. Following performance validation, our 3D printed optics were implemented in the production of a fully 3D printed microscope and demonstrated in histological imaging applications. We also applied low-cost fabrication methods to exotic lens geometries to enhance resolution and contrast across spatial scales and reveal new biological structures. Across these applications, our findings showed that 3D printed lenses are a viable substitute for commercial glass lenses, with the advantage of being relatively low-cost, accessible, and suitable for use in optical instruments. Combining 3D printed lenses with open-source 3D printed microscope chassis designs opens the doors for low-cost applications for rapid prototyping, low-resource field diagnostics, and the creation of cheap educational tools.
A Novel Neurophysiological Approach to Assessing Distractibility within the General Population
Vulnerability to distraction varies across the general population and significantly affects one’s capacity to stay focused on and successfully complete the task at hand, whether at school, on the road, or at work. In this talk, I will begin by discussing how distractibility is typically assessed in the literature and introduce our innovative ERP approach to measuring it. Since distractibility is a cardinal symptom of ADHD, I will introduce its most widely used paper-and-pencil screening tool for the general population as external validation. Following that, I will present the Load Theory of Attention and explain how we used perceptual load to test the reliability of our neural marker of distractibility. Finally, I will highlight potential future applications of this marker in clinical and educational settings.
PhenoSign - Molecular Dynamic Insights
Do You Know Your Blood Glucose Level? You Probably Should! A single measurement is not enough to truly understand your metabolic health. Blood glucose levels fluctuate dynamically, and meaningful insights require continuous monitoring over time. But glucose is just one example. Many other molecular concentrations in the body are not static. Their variations are influenced by individual physiology and overall health. PhenoSign, a Swiss MedTech startup, is on a mission to become the leader in real-time molecular analysis of complex fluids, supporting clinical decision-making and life sciences applications. By providing real-time, in-situ molecular insights, we aim to advance medicine and transform life sciences research. This talk will provide an overview of PhenoSign’s journey since its inception in 2022—our achievements, challenges, and the strategic roadmap we are executing to shape the future of real-time molecular diagnostics.
“Open Raman Microscopy (ORM): A modular Raman spectroscopy setup with an open-source controller”
Raman spectroscopy is a powerful technique for identifying chemical species by probing their vibrational energy levels, offering exceptional specificity with a relatively simple setup involving a laser source, spectrometer, and microscope/probe. However, the high cost of Raman systems lacking modularity often limits exploratory research hindering broader adoption. To address the need for an affordable, modular microscopy platform for multimodal imaging, we present a customizable confocal Raman spectroscopy setup alongside an open-source acquisition software, ORM (Open Raman Microscopy) Controller, developed in Python. This solution bridges the gap between expensive commercial systems and complex, custom-built setups used by specialist research groups. In this presentation, we will cover the components of the setup, the design rationale, assembly methods, limitations, and its modular potential for expanding functionality. Additionally, we will demonstrate ORM’s capabilities for instrument control, 2D and 3D Raman mapping, region-of-interest selection, and its adaptability to various instrument configurations. We will conclude by showcasing practical applications of this setup across different research fields.
Probing White Matter Microstructure With Diffusion-Weighted MRI: Techniques and Applications in ADRD
A modular, free and open source graphical interface for visualizing and processing electrophysiological signals in real-time
Portable biosensors become more popular every year. In this context, I propose NeuriGUI, a modular and cross-platform graphical interface that connects to those biosensors for real-time processing, exploring and storing of electrophysiological signals. The NeuriGUI acts as a common entry point in brain-computer interfaces, making it possible to plug in downstream third-party applications for real-time analysis of the incoming signal. NeuriGUI is 100% free and open source.
Generative models for video games (rescheduled)
Developing agents capable of modeling complex environments and human behaviors within them is a key goal of artificial intelligence research. Progress towards this goal has exciting potential for applications in video games, from new tools that empower game developers to realize new creative visions, to enabling new kinds of immersive player experiences. This talk focuses on recent advances of my team at Microsoft Research towards scalable machine learning architectures that effectively capture human gameplay data. In the first part of my talk, I will focus on diffusion models as generative models of human behavior. Previously shown to have impressive image generation capabilities, I present insights that unlock applications to imitation learning for sequential decision making. In the second part of my talk, I discuss a recent project taking ideas from language modeling to build a generative sequence model of an Xbox game.
Homeostatic Neural Responses to Photic Stimulation
This talk presents findings from open and closed-loop neural stimulation experiments using EEG. Fixed-frequency (10 Hz) stimulation revealed cross-cortical alpha power suppression post-stimulation, modulated by the difference between the individual's alpha frequency and the stimulation frequency. Closed-loop stimulation demonstrated phase-dependent effects: trough stimulation enhanced lower alpha activity, while peak stimulation suppressed high alpha to beta activity. These findings provide evidence for homeostatic mechanisms in the brain's response to photic stimulation, with implications for neuromodulation applications.
Volume measures in studies of hippocampal subfield structure: methodological considerations and applications
Generative models for video games
Developing agents capable of modeling complex environments and human behaviors within them is a key goal of artificial intelligence research. Progress towards this goal has exciting potential for applications in video games, from new tools that empower game developers to realize new creative visions, to enabling new kinds of immersive player experiences. This talk focuses on recent advances of my team at Microsoft Research towards scalable machine learning architectures that effectively capture human gameplay data. In the first part of my talk, I will focus on diffusion models as generative models of human behavior. Previously shown to have impressive image generation capabilities, I present insights that unlock applications to imitation learning for sequential decision making. In the second part of my talk, I discuss a recent project taking ideas from language modeling to build a generative sequence model of an Xbox game.
Immature brain insults and possible effects on cholinergic system neuroplasticity
Where Cognitive Neuroscience Meets Industry: Navigating the Intersections of Academia and Industry
In this talk, Mirta will share her journey from her education a mathematically-focused high school to her currently unconventional career in London, emphasizing the evolution from a local education in Croatia to international experiences in the US and UK. We will explore the concept of interdisciplinary careers in the modern world, viewing them through the framework of increasing demand, flexibility, and dynamism in the current workplace. We will underscore the significance of interdisciplinary research for launching careers outside of academia, and bolstering those within. I will challenge the conventional norm of working either in academia or industry, and encourage discussion about the opportunities for combining the two in a myriad of career opportunities. I’ll use examples from my own and others’ research to highlight opportunities for early career researchers to extend their work into practical applications. Such an approach leverages the strengths of both sectors, fostering innovation and practical applications of research findings. I hope these insights can offer valuable perspectives for those looking to navigate the evolving demands of the global job market, illustrating the advantages of a versatile skill set that spans multiple disciplines and allows extensions into exciting career options.
Mathematical and computational modelling of ocular hemodynamics: from theory to applications
Changes in ocular hemodynamics may be indicative of pathological conditions in the eye (e.g. glaucoma, age-related macular degeneration), but also elsewhere in the body (e.g. systemic hypertension, diabetes, neurodegenerative disorders). Thanks to its transparent fluids and structures that allow the light to go through, the eye offers a unique window on the circulation from large to small vessels, and from arteries to veins. Deciphering the causes that lead to changes in ocular hemodynamics in a specific individual could help prevent vision loss as well as aid in the diagnosis and management of diseases beyond the eye. In this talk, we will discuss how mathematical and computational modelling can help in this regard. We will focus on two main factors, namely blood pressure (BP), which drives the blood flow through the vessels, and intraocular pressure (IOP), which compresses the vessels and may impede the flow. Mechanism-driven models translates fundamental principles of physics and physiology into computable equations that allow for identification of cause-to-effect relationships among interplaying factors (e.g. BP, IOP, blood flow). While invaluable for causality, mechanism-driven models are often based on simplifying assumptions to make them tractable for analysis and simulation; however, this often brings into question their relevance beyond theoretical explorations. Data-driven models offer a natural remedy to address these short-comings. Data-driven methods may be supervised (based on labelled training data) or unsupervised (clustering and other data analytics) and they include models based on statistics, machine learning, deep learning and neural networks. Data-driven models naturally thrive on large datasets, making them scalable to a plethora of applications. While invaluable for scalability, data-driven models are often perceived as black- boxes, as their outcomes are difficult to explain in terms of fundamental principles of physics and physiology and this limits the delivery of actionable insights. The combination of mechanism-driven and data-driven models allows us to harness the advantages of both, as mechanism-driven models excel at interpretability but suffer from a lack of scalability, while data-driven models are excellent at scale but suffer in terms of generalizability and insights for hypothesis generation. This combined, integrative approach represents the pillar of the interdisciplinary approach to data science that will be discussed in this talk, with application to ocular hemodynamics and specific examples in glaucoma research.
Brain network communication: concepts, models and applications
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
OpenSFDI: an open hardware project for label-free measurements of tissue optical properties with spatial frequency domain imaging
Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption and reduced scattering on a pixel by-pixel basis. Measurements of absorption at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. In this talk, I will describe openSFDI, an open-source guide for building a low-cost, small-footprint, multi-wavelength SFDI system capable of quantifying absorption and reduced scattering as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The openSFDI project has a companion website which provides a complete parts list along with detailed instructions for assembling the openSFDI system. I will also review several technological advances our lab has recently made, including the extension of SFDI to the shortwave infrared wavelength band (900-1300 nm), where water and lipids provide strong contrast. Finally, I will discuss several preclinical and clinical applications for SFDI, including applications related to cancer, dermatology, rheumatology, cardiovascular disease, and others.
Diverse applications of artificial intelligence and mathematical approaches in ophthalmology
Ophthalmology is ideally placed to benefit from recent advances in artificial intelligence. It is a highly image-based specialty and provides unique access to the microvascular circulation and the central nervous system. This talk will demonstrate diverse applications of machine learning and deep learning techniques in ophthalmology, including in age-related macular degeneration (AMD), the leading cause of blindness in industrialized countries, and cataract, the leading cause of blindness worldwide. This will include deep learning approaches to automated diagnosis, quantitative severity classification, and prognostic prediction of disease progression, both from images alone and accompanied by demographic and genetic information. The approaches discussed will include deep feature extraction, label transfer, and multi-modal, multi-task training. Cluster analysis, an unsupervised machine learning approach to data classification, will be demonstrated by its application to geographic atrophy in AMD, including exploration of genotype-phenotype relationships. Finally, mediation analysis will be discussed, with the aim of dissecting complex relationships between AMD disease features, genotype, and progression.
How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience
This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.
Relations and Predictions in Brains and Machines
Humans and animals learn and plan with flexibility and efficiency well beyond that of modern Machine Learning methods. This is hypothesized to owe in part to the ability of animals to build structured representations of their environments, and modulate these representations to rapidly adapt to new settings. In the first part of this talk, I will discuss theoretical work describing how learned representations in hippocampus enable rapid adaptation to new goals by learning predictive representations, while entorhinal cortex compresses these predictive representations with spectral methods that support smooth generalization among related states. I will also cover recent work extending this account, in which we show how the predictive model can be adapted to the probabilistic setting to describe a broader array of generalization results in humans and animals, and how entorhinal representations can be modulated to support sample generation optimized for different behavioral states. In the second part of the talk, I will overview some of the ways in which we have combined many of the same mathematical concepts with state-of-the-art deep learning methods to improve efficiency and performance in machine learning applications like physical simulation, relational reasoning, and design.
Deep learning applications in ophthalmology
Deep learning techniques have revolutionized the field of image analysis and played a disruptive role in the ability to quickly and efficiently train image analysis models that perform as well as human beings. This talk will cover the beginnings of the application of deep learning in the field of ophthalmology and vision science, and cover a variety of applications of using deep learning as a method for scientific discovery and latent associations.
Analogical inference in mathematics: from epistemology to the classroom (and back)
In this presentation, we will discuss adaptations of historical examples of mathematical research to bring out some of the intuitive judgments that accompany the working practice of mathematicians when reasoning by analogy. The main epistemological claim that we will aim to illustrate is that a central part of mathematical training consists in developing a quasi-perceptual capacity to distinguish superficial from deep analogies. We think of this capacity as an instance of Hadamard’s (1954) discriminating faculty of the mathematical mind, whereby one is led to distinguish between mere “hookings” (77) and “relay-results” (80): on the one hand, suggestions or ‘hints’, useful to raise questions but not to back up conjectures; on the other, more significant discoveries, which can be used as an evidentiary source in further mathematical inquiry. In the second part of the presentation, we will present some recent applications of this epistemological framework to mathematics education projects for middle and high schools in Italy.
Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy
Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispecic antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents inuence the coordination mode. Target-specic radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.
AI-assisted language learning: Assessing learners who memorize and reason by analogy
Vocabulary learning applications like Duolingo have millions of users around the world, but yet are based on very simple heuristics to choose teaching material to provide to their users. In this presentation, we will discuss the possibility to develop more advanced artificial teachers, which would be based on modeling of the learner’s inner characteristics. In the case of teaching vocabulary, understanding how the learner memorizes is enough. When it comes to picking grammar exercises, it becomes essential to assess how the learner reasons, in particular by analogy. This second application will illustrate how analogical and case-based reasoning can be employed in an alternative way in education: not as the teaching algorithm, but as a part of the learner’s model.
Feedforward and feedback processes in visual recognition
Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching – and sometimes even surpassing – human accuracy on a variety of visual recognition tasks. In this talk, however, I will show that these neural networks and their recent extensions exhibit a limited ability to solve seemingly simple visual reasoning problems involving incremental grouping, similarity, and spatial relation judgments. Our group has developed a recurrent network model of classical and extra-classical receptive field circuits that is constrained by the anatomy and physiology of the visual cortex. The model was shown to account for diverse visual illusions providing computational evidence for a novel canonical circuit that is shared across visual modalities. I will show that this computational neuroscience model can be turned into a modern end-to-end trainable deep recurrent network architecture that addresses some of the shortcomings exhibited by state-of-the-art feedforward networks for solving complex visual reasoning tasks. This suggests that neuroscience may contribute powerful new ideas and approaches to computer science and artificial intelligence.
Systemic regulation and measurement of mammalian aging
Brain aging leads to cognitive decline and is the main risk factor for sporadic forms of neurodegenerative diseases including Alzheimer’s disease. While brain cell- and tissue-intrinsic factors are likely key determinants of the aging process recent studies document a remarkable susceptibility of the brain to circulatory factors. Thus, blood borne factors from young mice or humans are sufficient to slow aspects of brain aging and improve cognitive function in old mice and, vice versa, factors from old mice are detrimental for young mice and impair cognition. We found evidence that the cerebrovasculature is an important target of circulatory factors and that brain endothelial cells show prominent age-related transcriptional changes in response to plasma. Furthermore, plasma proteins are taken up broadly into the young brain through receptor mediated transport which declines with aging. At the same time, brain derived proteins are detectable in plasma allowing us to measure physiological changes linked to brain aging in plasma. We are exploring the relevance of these findings for neurodegeneration and potential applications towards therapies.
Alternative Applications of Foraging Theory
PiSpy: An Affordable, Accessible, and Flexible Imaging Platform for the Automated Observation of Organismal Biology and Behavior
A great deal of understanding can be gleaned from direct observation of organismal growth, development, and behavior. However, direct observation can be time consuming and influence the organism through unintentional stimuli. Additionally, video capturing equipment can often be prohibitively expensive, difficult to modify to one’s specific needs, and may come with unnecessary features. Here, we describe the PiSpy, a low-cost, automated video acquisition platform that uses a Raspberry Pi computer and camera to record video or images at specified time intervals or when externally triggered. All settings and controls, such as programmable light cycling, are accessible to users with no programming experience through an easy-to-use graphical user interface. Importantly, the entire PiSpy system can be assembled for less than $100 using laser-cut and 3D-printed components. We demonstrate the broad applications and flexibility of the PiSpy across a range of model and non-model organisms. Designs, instructions, and code can be accessed through an online repository, where a global community of PiSpy users can also contribute their own unique customizations and help grow the community of open-source research solutions.
Visualization and manipulation of our perception and imagery by BCI
We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.
4D Chromosome Organization: Combining Polymer Physics, Knot Theory and High Performance Computing
Self-organization is a universal concept spanning numerous disciplines including mathematics, physics and biology. Chromosomes are self-organizing polymers that fold into orderly, hierarchical and yet dynamic structures. In the past decade, advances in experimental biology have provided a means to reveal information about chromosome connectivity, allowing us to directly use this information from experiments to generate 3D models of individual genes, chromosomes and even genomes. In this talk I will present a novel data-driven modeling approach and discuss a number of possibilities that this method holds. I will discuss a detailed study of the time-evolution of X chromosome inactivation, highlighting both global and local properties of chromosomes that result in topology-driven dynamical arrest and present and characterize a novel type of motion we discovered in knots that may have applications to nanoscale materials and machines.
Cross-modality imaging of the neural systems that support executive functions
Executive functions refer to a collection of mental processes such as attention, planning and problem solving, supported by a frontoparietal distributed brain network. These functions are essential for everyday life. Specifically in the context of patients with brain tumours there is a need to preserve them in order to enable good quality of life for patients. During surgeries for the removal of a brain tumour, the aim is to remove as much as possible of the tumour and at the same time prevent damage to the areas around it to preserve function and enable good quality of life for patients. In many cases, functional mapping is conducted during an awake surgery in order to identify areas critical for certain functions and avoid their surgical resection. While mapping is routinely done for functions such as movement and language, mapping executive functions is more challenging. Despite growing recognition in the importance of these functions for patient well-being in recent years, only a handful of studies addressed their intraoperative mapping. In the talk, I will present our new approach for mapping executive function areas using electrocorticography during awake brain surgery. These results will be complemented by neuroimaging data from healthy volunteers, directed at reliably localizing executive function regions in individuals using fMRI. I will also discuss more broadly challenges ofß using neuroimaging for neurosurgical applications. We aim to advance cross-modality neuroimaging of cognitive function which is pivotal to patient-tailored surgical interventions, and will ultimately lead to improved clinical outcomes.
Taming chaos in neural circuits
Neural circuits exhibit complex activity patterns, both spontaneously and in response to external stimuli. Information encoding and learning in neural circuits depend on the ability of time-varying stimuli to control spontaneous network activity. In particular, variability arising from the sensitivity to initial conditions of recurrent cortical circuits can limit the information conveyed about the sensory input. Spiking and firing rate network models can exhibit such sensitivity to initial conditions that are reflected in their dynamic entropy rate and attractor dimensionality computed from their full Lyapunov spectrum. I will show how chaos in both spiking and rate networks depends on biophysical properties of neurons and the statistics of time-varying stimuli. In spiking networks, increasing the input rate or coupling strength aids in controlling the driven target circuit, which is reflected in both a reduced trial-to-trial variability and a decreased dynamic entropy rate. With sufficiently strong input, a transition towards complete network state control occurs. Surprisingly, this transition does not coincide with the transition from chaos to stability but occurs at even larger values of external input strength. Controllability of spiking activity is facilitated when neurons in the target circuit have a sharp spike onset, thus a high speed by which neurons launch into the action potential. I will also discuss chaos and controllability in firing-rate networks in the balanced state. For these, external control of recurrent dynamics strongly depends on correlations in the input. This phenomenon was studied with a non-stationary dynamic mean-field theory that determines how the activity statistics and the largest Lyapunov exponent depend on frequency and amplitude of the input, recurrent coupling strength, and network size. This shows that uncorrelated inputs facilitate learning in balanced networks. The results highlight the potential of Lyapunov spectrum analysis as a diagnostic for machine learning applications of recurrent networks. They are also relevant in light of recent advances in optogenetics that allow for time-dependent stimulation of a select population of neurons.
From natural scene statistics to multisensory integration: experiments, models and applications
To efficiently process sensory information, the brain relies on statistical regularities in the input. While generally improving the reliability of sensory estimates, this strategy also induces perceptual illusions that help reveal the underlying computational principles. Focusing on auditory and visual perception, in my talk I will describe how the brain exploits statistical regularities within and across the senses for the perception space, time and multisensory integration. In particular, I will show how results from a series of psychophysical experiments can be interpreted in the light of Bayesian Decision Theory, and I will demonstrate how such canonical computations can be implemented into simple and biologically plausible neural circuits. Finally, I will show how such principles of sensory information processing can be leveraged in virtual and augmented reality to overcome display limitations and expand human perception.
What does the primary visual cortex tell us about object recognition?
Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.
From bench to clinic – Translating fundamental neuroscience into real-life healthcare practices, and developing nationally recognised life science companies
Dr. Ryan C.N. D’Arcy is a Canadian neuroscientist, researcher, innovator and entrepreneur. Dr. D'Arcy co-founded HealthTech Connex Inc. and serves as President and Chief Scientific Officer. HealthTech Connex translates neuroscience advances into health technology breakthroughs. D'Arcy is most known for coining the term "brain vital signs" and for leading the research and development of the brain vital signs framework. Dr. D’Arcy also holds a BC Leadership Chair in Medical Technology, is a full Professor at Simon Fraser University, and a member of the DM Centre for Brain Health at the University of British Columbia. He has published more than 260 academic works, attracted more than $85 Million CAD in competitive research and innovation funding, and been recognized through numerous awards and distinctions. Please join us for an exciting virtual talk with Dr. D'Arcy who will speak on some of the current research he is involved in, how he is translating this research into real-life applications, and the development of HealthTech Connects Inc.
Mechanisms of sleep-seizure interactions in tuberous sclerosis and other mTORpathies
An intriguing, relatively unexplored therapeutic avenue to investigate epilepsy is the interaction of sleep mechanisms and seizures. Multiple lines of clinical observations suggest a strong, bi-directional relationship between epilepsy and sleep. Epilepsy and sleep disorders are common comorbidities. Seizures occur more commonly in sleep in many types of epilepsy, and in turn, seizures can cause disrupted sleep. Sudden unexplained death in epilepsy (SUDEP) is strongly associated with sleep. The biological mechanisms underlying this relationship between seizures and sleep are poorly understood, but if better delineated, could offer novel therapeutic approaches to treating both epilepsy and sleep disorders. In this presentation, I will explore this sleep-seizure relationship in mouse models of epilepsy. First, I will present general approaches for performing detailed longitudinal sleep and vigilance state analysis in mice, including pre-weanling neonatal mice. I will then discuss recent data from my laboratory demonstrating an abnormal sleep phenotype in a mouse model of the genetic epilepsy, tuberous sclerosis complex (TSC), and its relationship to seizures. The potential mechanistic basis of sleep abnormalities and sleep-seizure interactions in this TSC model will be investigated, focusing on the role of the mechanistic target of rapamycin (mTOR) pathway and hypothalamic orexin, with potential therapeutic applications of mTOR inhibitors and orexin antagonists. Finally, similar sleep-seizure interactions and mechanisms will be extended to models of acquired epilepsy due to status epilepticus-related brain injury.
Adaptive Deep Brain Stimulation: Investigational System Development at the Edge of Clinical Brain Computer Interfacing
Over the last few decades, the use of deep brain stimulation (DBS) to improve the treatment of those with neurological movement disorders represents a critical success story in the development of invasive neurotechnology and the promise of brain-computer interfaces (BCI) to improve the lives of those suffering from incurable neurological disorders. In the last decade, investigational devices capable of recording and streaming neural activity from chronically implanted therapeutic electrodes has supercharged research into clinical applications of BCI, enabling in-human studies investigating the use of adaptive stimulation algorithms to further enhance therapeutic outcomes and improve future device performance. In this talk, Dr. Herron will review ongoing clinical research efforts in the field of adaptive DBS systems and algorithms. This will include an overview of DBS in current clinical practice, the development of bidirectional clinical-use research platforms, ongoing algorithm evaluation efforts, a discussion of current adoption barriers to be addressed in future work.
“Mind reading” with brain scanners: Facts versus science fiction
Every thought is associated with a unique pattern of brain activity. Thus, in principle, it should be possible to use these activity patterns as "brain fingerprints" for different thoughts and to read out what a person is thinking based on their brain activity alone. Indeed, using machine learning considerable progress has been made in such "brainreading" in recent years. It is now possible to decode which image a person is viewing, which film sequence they are watching, which emotional state they are in or which intentions they hold in mind. This talk will provide an overview of the current state of the art in brain reading. It will also highlight the main challenges and limitations of this research field. For example, mathematical models are needed to cope with the high dimensionality of potential mental states. Furthermore, the ethical concerns raised by (often premature) commercial applications of brain reading will also be discussed.
Edge Computing using Spiking Neural Networks
Deep learning has made tremendous progress in the last year but it's high computational and memory requirements impose challenges in using deep learning on edge devices. There has been some progress in lowering memory requirements of deep neural networks (for instance, use of half-precision) but there has been minimal effort in developing alternative efficient computational paradigms. Inspired by the brain, Spiking Neural Networks (SNN) provide an energy-efficient alternative to conventional rate-based neural networks. However, SNN architectures that employ the traditional feedforward and feedback pass do not fully exploit the asynchronous event-based processing paradigm of SNNs. In the first part of my talk, I will present my work on predictive coding which offers a fundamentally different approach to developing neural networks that are particularly suitable for event-based processing. In the second part of my talk, I will present our work on development of approaches for SNNs that target specific problems like low response latency and continual learning. References Dora, S., Bohte, S. M., & Pennartz, C. (2021). Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Frontiers in Computational Neuroscience, 65. Saranirad, V., McGinnity, T. M., Dora, S., & Coyle, D. (2021, July). DoB-SNN: A New Neuron Assembly-Inspired Spiking Neural Network for Pattern Classification. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. Machingal, P., Thousif, M., Dora, S., Sundaram, S., Meng, Q. (2021). A Cross Entropy Loss for Spiking Neural Networks. Expert Systems with Applications (under review).
Improving Communication With the Brain Through Electrode Technologies
Over the past 30 years bionic devices such as cochlear implants and pacemakers, have used a small number of metal electrodes to restore function and monitor activity in patients following disease or injury of excitable tissues. Growing interest in neurotechnologies, facilitated by ventures such as BrainGate, Neuralink and the European Human Brain Project, has increased public awareness of electrotherapeutics and led to both new applications for bioelectronics and a growing demand for less invasive devices with improved performance. Coupled with the rapid miniaturisation of electronic chips, bionic devices are now being developed to diagnose and treat a wide variety of neural and muscular disorders. Of particular interest is the area of high resolution devices that require smaller, more densely packed electrodes. Due to poor integration and communication with body tissue, conventional metallic electrodes cannot meet these size and spatial requirements. We have developed a range of polymer based electronic materials including conductive hydrogels (CHs), conductive elastomers (CEs) and living electrodes (LEs). These technologies provide synergy between low impedance charge transfer, reduced stiffness and an ability to be provide a biologically active interface. A range of electrode approaches are presented spanning wearables, implantables and drug delivery devices. This talk outlines the materials development and characterisation of both in vitro properties and translational in vivo performance. The challenges for translation and commercial uptake of novel technologies will also be discussed.
Through the bottleneck: my adventures with the 'Tishby program'
One of Tali's cherished goals was to transform biology into physics. In his view, biologists were far too enamored by the details of the specific models they studied, losing sight of the big principles that may govern the behavior of these models. One such big principle that he suggested was the 'information bottleneck (IB) principle'. The iIB principle is an information-theoretical approach for extracting the relevant information that one random variable carries about another. Tali applied the IB principle to numerous problems in biology, gaining important insights in the process. Here I will describe two applications of the IB principle to neurobiological data. The first is the formalization of the notion of surprise that allowed us to rigorously estimate the memory duration and content of neuronal responses in auditory cortex, and the second is an application to behavior, allowing us to estimate 'optimal policies under information constraints' that shed interesting light on rat behavior.
In vitro bioelectronic models of the gut-brain axis
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut-brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome-gut-brain axis cross-talk relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. Organ-on-chip technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. In this talk I’ll discuss our progress towards generating a complete platform of the human microbiota-gut-brain axis with integrated monitoring and sensing capabilities. Bringing together principles of materials science, tissue engineering, 3D cell biology and bioelectronics, we are building advanced models of the GI and the BBB /NVU, with real-time and label-free monitoring units adapted in the model architecture, towards a robust and more physiologically relevant human in vitro model, aiming to i) elucidate the role of microbiota in the gut-brain axis communication, ii) to study how diet and impaired microbiota profiles affect various (patho-)physiologies, and iii) to test personalised medicine approaches for disease modelling and drug testing.
Swarms for people
As tiny robots become individually more sophisticated, and larger robots easier to mass produce, a breakdown of conventional disciplinary silos is enabling swarm engineering to be adopted across scales and applications, from nanomedicine to treat cancer, to cm-sized robots for large-scale environmental monitoring or intralogistics. This convergence of capabilities is facilitating the transfer of lessons learned from one scale to the other. Cm-sized robots that work in the 1000s may operate in a way similar to reaction-diffusion systems at the nanoscale, while sophisticated microrobots may have individual capabilities that allow them to achieve swarm behaviour reminiscent of larger robots with memory, computation, and communication. Although the physics of these systems are fundamentally different, much of their emergent swarm behaviours can be abstracted to their ability to move and react to their local environment. This presents an opportunity to build a unified framework for the engineering of swarms across scales that makes use of machine learning to automatically discover suitable agent designs and behaviours, digital twins to seamlessly move between the digital and physical world, and user studies to explore how to make swarms safe and trustworthy. Such a framework would push the envelope of swarm capabilities, towards making swarms for people.
Multisensory Integration: Development, Plasticity, and Translational Applications
Introducing YAPiC: An Open Source tool for biologists to perform complex image segmentation with deep learning
Robust detection of biological structures such as neuronal dendrites in brightfield micrographs, tumor tissue in histological slides, or pathological brain regions in MRI scans is a fundamental task in bio-image analysis. Detection of those structures requests complex decision making which is often impossible with current image analysis software, and therefore typically executed by humans in a tedious and time-consuming manual procedure. Supervised pixel classification based on Deep Convolutional Neural Networks (DNNs) is currently emerging as the most promising technique to solve such complex region detection tasks. Here, a self-learning artificial neural network is trained with a small set of manually annotated images to eventually identify the trained structures from large image data sets in a fully automated way. While supervised pixel classification based on faster machine learning algorithms like Random Forests are nowadays part of the standard toolbox of bio-image analysts (e.g. Ilastik), the currently emerging tools based on deep learning are still rarely used. There is also not much experience in the community how much training data has to be collected, to obtain a reasonable prediction result with deep learning based approaches. Our software YAPiC (Yet Another Pixel Classifier) provides an easy-to-use Python- and command line interface and is purely designed for intuitive pixel classification of multidimensional images with DNNs. With the aim to integrate well in the current open source ecosystem, YAPiC utilizes the Ilastik user interface in combination with a high performance GPU server for model training and prediction. Numerous research groups at our institute have already successfully applied YAPiC for a variety of tasks. From our experience, a surprisingly low amount of sparse label data is needed to train a sufficiently working classifier for typical bioimaging applications. Not least because of this, YAPiC has become the "standard weapon” for our core facility to detect objects in hard-to-segement images. We would like to present some use cases like cell classification in high content screening, tissue detection in histological slides, quantification of neural outgrowth in phase contrast time series, or actin filament detection in transmission electron microscopy.
Picocalorimeter sensors for liquid samples with applications to chemical reactions and biochemistry
The Challenge and Opportunities of Mapping Cortical Layer Activity and Connectivity with fMRI
In this talk I outline the technical challenges and current solutions to layer fMRI. Specifically, I describe our acquisition strategies for maximizing resolution, spatial coverage, time efficiency as well as, perhaps most importantly, vascular specificity. Novel applications from our group, including mapping feedforward and feedback connections to M1 during task and sensory input modulation and S1 during a sensory prediction task are be shown. Layer specific activity in dorsal lateral prefrontal cortex during a working memory task is also demonstrated. Additionally, I’ll show preliminary work on mapping whole brain layer-specific resting state connectivity and hierarchy.
Identifying key structural connections from functional response data: theory & applications
COSYNE 2022
Identifying key structural connections from functional response data: theory & applications
COSYNE 2022
Computer vision and image processing applications on astrocyte-glioma interactions in 3D cell culture
FENS Forum 2024
Extracellular vesicles and transmission of α-synuclein pathology: From cellular models to diagnostic applications
FENS Forum 2024
Review of applications of graph theory and network neuroscience in the development of artificial neural networks
Neuromatch 5