Artificial Networks
artificial networks
Bridging the gap between artificial models and cortical circuits
Artificial neural networks simplify complex biological circuits into tractable models for computational exploration and experimentation. However, the simplification of artificial models also undermines their applicability to real brain dynamics. Typical efforts to address this mismatch add complexity to increasingly unwieldy models. Here, we take a different approach; by reducing the complexity of a biological cortical culture, we aim to distil the essential factors of neuronal dynamics and plasticity. We leverage recent advances in growing neurons from human induced pluripotent stem cells (hiPSCs) to analyse ex vivo cortical cultures with only two distinct excitatory and inhibitory neuron populations. Over 6 weeks of development, we record from thousands of neurons using high-density microelectrode arrays (HD-MEAs) that allow access to individual neurons and the broader population dynamics. We compare these dynamics to two-population artificial networks of single-compartment neurons with random sparse connections and show that they produce similar dynamics. Specifically, our model captures the firing and bursting statistics of the cultures. Moreover, tightly integrating models and cultures allows us to evaluate the impact of changing architectures over weeks of development, with and without external stimuli. Broadly, the use of simplified cortical cultures enables us to use the repertoire of theoretical neuroscience techniques established over the past decades on artificial network models. Our approach of deriving neural networks from human cells also allows us, for the first time, to directly compare neural dynamics of disease and control. We found that cultures e.g. from epilepsy patients tended to have increasingly more avalanches of synchronous activity over weeks of development, in contrast to the control cultures. Next, we will test possible interventions, in silico and in vitro, in a drive for personalised approaches to medical care. This work starts bridging an important theoretical-experimental neuroscience gap for advancing our understanding of mammalian neuron dynamics.
Signal in the Noise: models of inter-trial and inter-subject neural variability
The ability to record large neural populations—hundreds to thousands of cells simultaneously—is a defining feature of modern systems neuroscience. Aside from improved experimental efficiency, what do these technologies fundamentally buy us? I'll argue that they provide an exciting opportunity to move beyond studying the "average" neural response. That is, by providing dense neural circuit measurements in individual subjects and moments in time, these recordings enable us to track changes across repeated behavioral trials and across experimental subjects. These two forms of variability are still poorly understood, despite their obvious importance to understanding the fidelity and flexibility of neural computations. Scientific progress on these points has been impeded by the fact that individual neurons are very noisy and unreliable. My group is investigating a number of customized statistical models to overcome this challenge. I will mention several of these models but focus particularly on a new framework for quantifying across-subject similarity in stochastic trial-by-trial neural responses. By applying this method to noisy representations in deep artificial networks and in mouse visual cortex, we reveal that the geometry of neural noise correlations is a meaningful feature of variation, which is neglected by current methods (e.g. representational similarity analysis).
Time as a continuous dimension in natural and artificial networks
Neural representations of time are central to our understanding of the world around us. I review cognitive, neurophysiological and theoretical work that converges on three simple ideas. First, the time of past events is remembered via populations of neurons with a continuum of functional time constants. Second, these time constants evenly tile the log time axis. This results in a neural Weber-Fechner scale for time which can support behavioral Weber-Fechner laws and characteristic behavioral effects in memory experiments. Third, these populations appear as dual pairs---one type of population contains cells that change firing rate monotonically over time and a second type of population that has circumscribed temporal receptive fields. These ideas can be used to build artificial neural networks that have novel properties. Of particular interest, a convolutional neural network built using these principles can generalize to arbitrary rescaling of its inputs. That is, after learning to perform a classification task on a time series presented at one speed, it successfully classifies stimuli presented slowed down or sped up. This result illustrates the point that this confluence of ideas originating in cognitive psychology and measured in the mammalian brain could have wide-reaching impacts on AI research.
Multiscale encodings of memories in hippocampal and artificial networks
COSYNE 2022
Multiscale encodings of memories in hippocampal and artificial networks
COSYNE 2022