Assessment
assessment
An Ecological and Objective Neural Marker of Implicit Unfamiliar Identity Recognition
We developed a novel paradigm measuring implicit identity recognition using Fast Periodic Visual Stimulation (FPVS) with EEG among 16 students and 12 police officers with normal face processing abilities. Participants' neural responses to a 1-Hz tagged oddball identity embedded within a 6-Hz image stream revealed implicit recognition with high-quality mugshots but not CCTV-like images, suggesting optimal resolution requirements. Our findings extend previous research by demonstrating that even unfamiliar identities can elicit robust neural recognition signatures through brief, repeated passive exposure. This approach offers potential for objective validation of face processing abilities in forensic applications, including assessment of facial examiners, Super-Recognisers, and eyewitnesses, potentially overcoming limitations of traditional behavioral assessment methods.
Using Fast Periodic Visual Stimulation to measure cognitive function in dementia
Fast periodic visual stimulation (FPVS) has emerged as a promising tool for assessing cognitive function in individuals with dementia. This technique leverages electroencephalography (EEG) to measure brain responses to rapidly presented visual stimuli, offering a non-invasive and objective method for evaluating a range of cognitive functions. Unlike traditional cognitive assessments, FPVS does not rely on behavioural responses, making it particularly suitable for individuals with cognitive impairment. In this talk I will highlight a series of studies that have demonstrated its ability to detect subtle deficits in recognition memory, visual processing and attention in dementia patients using EEG in the lab, at home and in clinic. The method is quick, cost-effective, and scalable, utilizing widely available EEG technology. FPVS holds significant potential as a functional biomarker for early diagnosis and monitoring of dementia, paving the way for timely interventions and improved patient outcomes.
Beyond Homogeneity: Characterizing Brain Disorder Heterogeneity through EEG and Normative Modeling
Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in psychiatric EEG research relying on a case-control approach. We combine HD-EEG with normative modeling to quantify this heterogeneity using two well-established and extensively investigated EEG characteristics -spectral power and functional connectivity- across a cohort of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, learning disorder, or anxiety, and 560 matched controls. Normative models showed that deviations from population norms among patients were highly heterogeneous and frequency-dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral and connectivity, respectively. Considering individual deviations in patients has significantly enhanced comparative analysis, and the identification of patient-specific markers has demonstrated a correlation with clinical assessments, representing a crucial step towards attaining precision psychiatry through EEG.
Influence of the context of administration in the antidepressant-like effects of the psychedelic 5-MeO-DMT
Psychedelics like psilocybin have shown rapid and long-lasting efficacy on depressive and anxiety symptoms. Other psychedelics with shorter half-lives, such as DMT and 5-MeO-DMT, have also shown promising preliminary outcomes in major depression, making them interesting candidates for clinical practice. Despite several promising clinical studies, the influence of the context on therapeutic responses or adverse effects remains poorly documented. To address this, we conducted preclinical studies evaluating the psychopharmacological profile of 5-MeO-DMT in contexts previously validated in mice as either pleasant (positive setting) or aversive (negative setting). Healthy C57BL/6J male mice received a single intraperitoneal (i.p.) injection of 5-MeO-DMT at doses of 0.5, 5, and 10 mg/kg, with assessments at 2 hours, 24 hours, and one week post-administration. In a corticosterone (CORT) mouse model of depression, 5-MeO-DMT was administered in different settings, and behavioral tests mimicking core symptoms of depression and anxiety were conducted. In CORT-exposed mice, an acute dose of 0.5 mg/kg administered in a neutral setting produced antidepressant-like effects at 24 hours, as observed by reduced immobility time in the Tail Suspension Test (TST). In a positive setting, the drug also reduced latency to first immobility and total immobility time in the TST. However, these beneficial effects were negated in a negative setting, where 5-MeO-DMT failed to produce antidepressant-like effects and instead elicited an anxiogenic response in the Elevated Plus Maze (EPM).Our results indicate a strong influence of setting on the psychopharmacological profile of 5-MeO-DMT. Future experiments will examine cortical markers of pre- and post-synaptic density to correlate neuroplasticity changes with the behavioral effects of 5-MeO-DMT in different settings.
Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment
Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.
Improving Language Understanding by Generative Pre Training
Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on question answering (RACE), and 1.5% on textual entailment (MultiNLI).
Internet interventions targeting grief symptoms
Web-based self-help interventions for coping with prolonged grief have established their efficacy. However, few programs address recent losses and investigate the effect of self-tailoring of the content. In an international project, the text-based self-help program LIVIA was adapted and complemented with an Embodied Conversational Agent, an initial risk assessment and a monitoring tool. The new program SOLENA was evaluated in three trials in Switzerland, the Netherlands and Portugal. The aim of the trials was to evaluate the clinical efficacy for reducing grief, depression and loneliness and to examine client satisfaction and technology acceptance. The talk will present the SOLENA program and report results of the Portuguese and Dutch trial as well as preliminary results of the Swiss RCT. The ongoing Swiss trial compares a standardised to a self-tailored delivery format and analyses clinical outcomes, the helpfulness of specific content and the working alliance. Finally, lessons learned in the development and evaluation of a web-based self-help intervention for older adults will be discusses.
Studies on the role of relevance appraisal in affect elicitation
A fundamental question in affective sciences is how the human mind decides if, and in what intensity, to elicit an affective response. Appraisal theories assume that preceding the affective response, there is an evaluation stage in which dimensions of an event are being appraised. Common to most appraisal theories is the assumption that the evaluation phase involves the assessment of the stimulus’ relevance to the perceiver’s well-being. In this talk, I first discuss conceptual and methodological challenges in investigating relevance appraisal. Next, I present two lines of experiments that ask how the human mind uses information about objective and subjective probabilities in the decision about the intensity of the emotional response and how these are affected by the valence of the event. The potential contribution of the results to appraisal theory is discussed.
Face and voice perception as a tool for characterizing perceptual decisions and metacognitive abilities across the general population and psychosis spectrum
Humans constantly make perceptual decisions on human faces and voices. These regularly come with the challenge of receiving only uncertain sensory evidence, resulting from noisy input and noisy neural processes. Efficiently adapting one’s internal decision system including prior expectations and subsequent metacognitive assessments to these challenges is crucial in everyday life. However, the exact decision mechanisms and whether these represent modifiable states remain unknown in the general population and clinical patients with psychosis. Using data from a laboratory-based sample of healthy controls and patients with psychosis as well as a complementary, large online sample of healthy controls, I will demonstrate how a combination of perceptual face and voice recognition decision fidelity, metacognitive ratings, and Bayesian computational modelling may be used as indicators to differentiate between non-clinical and clinical states in the future.
Diagnosing dementia using Fastball neurocognitive assessment
Fastball is a novel, fast, passive biomarker of cognitive function, that uses cheap, scalable electroencephalography (EEG) technology. It is sensitive to early dementia; language, education, effort and anxiety independent and can be used in any setting including patients’ homes. It can capture a range of cognitive functions including semantic memory, recognition memory, attention and visual function. We have shown that Fastball is sensitive to cognitive dysfunction in Alzheimer’s disease and Mild Cognitive Impairment, with data collected in patients’ homes using low-cost portable EEG. We are now preparing for significant scale-up and the validation of Fastball in primary and secondary care.
Understanding and Mitigating Bias in Human & Machine Face Recognition
With the increasing use of automated face recognition (AFR) technologies, it is important to consider whether these systems not only perform accurately, but also equitability or without “bias”. Despite rising public, media, and scientific attention to this issue, the sources of bias in AFR are not fully understood. This talk will explore how human cognitive biases may impact our assessments of performance differentials in AFR systems and our subsequent use of those systems to make decisions. We’ll also show how, if we adjust our definition of what a “biased” AFR algorithm looks like, we may be able to create algorithms that optimize the performance of a human+algorithm team, not simply the algorithm itself.
Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being
Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.
What's wrong with the prosopagnosia literature? A new approach to diagnosing and researching the condition
Developmental prosopagnosia is characterised by severe, lifelong difficulties when recognising facial identity. Most researchers require prosopagnosia cases exhibit ultra-conservative levels of impairment on the Cambridge Face Memory Test before they include them in their experiments. This results in the majority of people who believe that they have this condition being excluded from the scientific literature. In this talk I outline the many issues that will afflict prosopagnosia research if this continues, and show that these excluded cases do exhibit impairments on all commonly used diagnostic tests when a group-based method of assessment is utilised. I propose a paradigm shift away from cognitive task-based approaches to diagnosing prosopagnosia, and outline a new way that researchers can investigate this condition.
Protocols for the social transfer of pain and analgesia in mice
We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund’s adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. Highlights • A protocol for the rapid social transfer of pain in rodents • Detailed requirements for handling and housing conditions • Procedures for habituation, social interaction, and pain induction and assessment • Adaptable for social transfer of analgesia and may be used to study empathy in rodents https://doi.org/10.1016/j.xpro.2022.101756
Taking the pulse of ageing: the role of cerebrovascular risk factors in ageing and dementia
Cerebrovascular support is critical for healthy cognitive ageing. Reduced cerebral blood flow in ageing is caused, among other things, by hypertension, arteriosclerosis (i.e. stiffening of the arteries) and plaque formation. Arterial stiffness is predictive of cognitive decline, is a critical risk factor for cerebrovascular accidents, and has been linked to heightened risks for Alzheimer’s Disease and other forms of dementia. The elasticity of cerebral arteries is influenced by lifestyle factors, including cardiorespiratory fitness. Monica will discuss data obtained in their laboratory with new noninvasive measures of cerebrovascular health (pulse-DOT, a diffuse optical tomographic method for studying cerebral arteriosclerosis), in conjunction with structural and functional brain measures and cognitive assessments. These findings support a model in which localised changes in arteriosclerosis lead to specific profiles of structural, functional, and cognitive declines, paving a way to individualised interventions.
Biological and experience-based trajectories in adolescent brain and cognitive development
Adolescent development is not only shaped by the mere passing of time and accumulating experience, but it also depends on pubertal timing and the cascade of maturational processes orchestrated by gonadal hormones. Although individual variability in puberty onset confounds adolescent studies, it has not been efficiently controlled for. Here we introduce ultrasonic bone age assessment to estimate biological maturity and disentangle the independent effects of chronological and biological age on adolescent cognitive abilities, emotional development, and brain maturation. Comparing cognitive performance of participants with different skeletal maturity we uncover the impact of biological age on both IQ and specific abilities. With respect to emotional development, we find narrow windows of highest vulnerability determined by biological age. In terms of neural development, we focus on the relevance of neural states unrelated to sensory stimulation, such as cortical activity during sleep and resting states, and we uncover a novel anterior-to-posterior pattern of human brain maturation. Based on our findings, bone age is a promising biomarker of adolescent maturity.
The peripheral airways in Asthma: significance, assessment, and targeted treatment
The peripheral airways are technically challenging to assess and have been overlooked in the assessment of chronic respiratory diseases such as Asthma, in both the clinical and research space. Evidence of the importance of the small airways in Asthma is building, and small airways dysfunction is implicated in poor Asthma control, airway hyperresponsiveness, and exacerbation risk. The aim of this research was to complete comprehensive global, regional, and spatial assessments of airway function and ventilation in Asthma using physiological and MRI techniques. Specific ventilation imaging (SVI) and Phase resolved functional lung imaging (PREFUL) formed the spatial assessments. SVI uses oxygen as a contrast agent and looks at rate of change in signal to assess ventilation heterogeneity, PREFUL is a completely contrast free technique that uses Fourier decomposition to determine fractional ventilation.
Integrating theory-guided and data-driven approaches for measuring consciousness
Clinical assessment of consciousness is a significant issue, with recent research suggesting some brain-damaged patients who are assessed as unconscious are in fact conscious. Misdiagnosis of consciousness can also be detrimental when it comes to general anaesthesia, causing numerous psychological problems, including post-traumatic stress disorder. Avoiding awareness with overdose of anaesthetics, however, can also lead to cognitive impairment. Currently available objective assessment of consciousness is limited in accuracy or requires expensive equipment with major barriers to translation. In this talk, we will outline our recent theory-guided and data-driven approaches to develop new, optimized consciousness measures that will be robustly evaluated on an unprecedented breadth of high-quality neural data, recorded from the fly model system. We will overcome the subjective-choice problem in data-driven and theory-guided approaches with a comprehensive data analytic framework, which has never been applied to consciousness detection, integrating previously disconnected streams of research in consciousness detection to accelerate the translation of objective consciousness measures into clinical settings.
Multimodal tracking of motor activity, sleep and mood
This talk will (1) describe patterns and correlates of objectively assessed motor activity (2) present findings on the inter-relationships among motor activity, sleep and circadian rhythms and mood disorders; (3) describe potential of cross species studies of motor activity and related systems to inform human chronobiology research
Multi-muscle TMS mapping assessment of the motor cortex reorganization after finger dexterity training
It is widely known that motor learning leads to reorganization changes in the motor cortex. Recently, we have shown that using navigated transcranial magnetic stimulation (TMS) allows us to reliably trace interactions among motor cortical representations (MCRs) of different upper limb muscles. Using this approach, we investigate changes in the MCRs after fine finger movement training. Our preliminary results demonstrated that areas of the APB and ADM and their overlaps tended to increase after finger independence training. Considering the behavioral data, hand dexterity increased for both hands, but the amplitudes of voluntary contraction of the muscles for the APB and ADM did not change significantly. The behavioral results correspond with a previously described suggestion that hand strength and hand dexterity are not directly related as well as an increase in overlaps between MCRs of the trained muscles supports the idea that voluntary muscle relaxation is an active physiological process.
Brain and behavioural impacts of early life adversity
Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.
Commonly used face cognition tests yield low reliability and inconsistent performance: Implications for test design, analysis, and interpretation of individual differences data
Unfamiliar face processing (face cognition) ability varies considerably in the general population. However, the means of its assessment are not standardised, and selected laboratory tests vary between studies. It is also unclear whether 1) the most commonly employed tests are reliable, 2) participants show a degree of consistency in their performance, 3) and the face cognition tests broadly measure one underlying ability, akin to general intelligence. In this study, we asked participants to perform eight tests frequently employed in the individual differences literature. We examined the reliability of these tests, relationships between them, consistency in participants’ performance, and used data driven approaches to determine factors underpinning performance. Overall, our findings suggest that the reliability of these tests is poor to moderate, the correlations between them are weak, the consistency in participant performance across tasks is low and that performance can be broadly split into two factors: telling faces together, and telling faces apart. We recommend that future studies adjust analyses to account for stimuli (face images) and participants as random factors, routinely assess reliability, and that newly developed tests of face cognition are examined in the context of convergent validity with other commonly used measures of face cognition ability.
Brain chart for the human lifespan
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.
Consistency of Face Identity Processing: Basic & Translational Research
Previous work looking at individual differences in face identity processing (FIP) has found that most commonly used lab-based performance assessments are unfortunately not sufficiently sensitive on their own for measuring performance in both the upper and lower tails of the general population simultaneously. So more recently, researchers have begun incorporating multiple testing procedures into their assessments. Still, though, the growing consensus seems to be that at the individual level, there is quite a bit of variability between test scores. The overall consequence of this is that extreme scores will still occur simply by chance in large enough samples. To mitigate this issue, our recent work has developed measures of intra-individual FIP consistency to refine selection of those with superior abilities (i.e. from the upper tail). For starters, we assessed consistency of face matching and recognition in neurotypical controls, and compared them to a sample of SRs. In terms of face matching, we demonstrated psychophysically that SRs show significantly greater consistency than controls in exploiting spatial frequency information than controls. Meanwhile, we showed that SRs’ recognition of faces is highly related to memorability for identities, yet effectively unrelated among controls. So overall, at the high end of the FIP spectrum, consistency can be a useful tool for revealing both qualitative and quantitative individual differences. Finally, in conjunction with collaborators from the Rheinland-Pfalz Police, we developed a pair of bespoke work samples to get bias-free measures of intraindividual consistency in current law enforcement personnel. Officers with higher composite scores on a set of 3 challenging FIP tests tended to show higher consistency, and vice versa. Overall, this suggests that not only is consistency a reasonably good marker of superior FIP abilities, but could present important practical benefits for personnel selection in many other domains of expertise.
Clinical Outcome Assessments in Ataxias
Understanding the Assessment of Spatial Neglect and its Treatment Using Prism Adaptation Training
Spatial neglect is a syndrome that is most frequently associated with damage to the right hemisphere, although damage to the left hemisphere can also result in signs of spatial neglect. It is characterised by absent or deficient awareness of the contralesional side of space. The screening and diagnosis of spatial neglect lacks a universal gold standard, but is usually achieved by using various modes of assessment. Spatial neglect is also difficult to treat, although prism adaptation training (PAT) has in the past reportedly showed some promise. This seminar will include highlights from a series of studies designed to identify knowledge gaps, and will suggest ways in which these can be bridged. The first study was conducted to identify and quantify clinicians’ use of assessment tools for spatial neglect, finding that several different tools are in use, but that there is an emerging consensus and appetite for harmonisation. The second study included PAT, and sought to uncover whether PAT can improve engagement in recommended therapy in order to improve the outcomes of stroke survivors with spatial neglect. The final study, a systematic review and meta-analysis, sought to investigate the scientific efficacy (rather than clinical effectiveness) of PAT, identifying several knowledge gaps in the existing literature and a need for a new approach in the study of PAT in the clinical setting.
Analogical Reasoning Plus: Why Dissimilarities Matter
Analogical reasoning remains foundational to the human ability to forge meaningful patterns within the sea of information that continually inundates the senses. Yet, meaningful patterns rely not only on the recognition of attributional similarities but also dissimilarities. Just as the perception of images rests on the juxtaposition of lightness and darkness, reasoning relationally requires systematic attention to both similarities and dissimilarities. With that awareness, my colleagues and I have expanded the study of relational reasoning beyond analogous reasoning and attributional similarities to highlight forms based on the nature of core dissimilarities: anomalous, antinomous, and antithetical reasoning. In this presentation, I will delineate the character of these relational reasoning forms; summarize procedures and measures used to assess them; overview key research findings; and describe how the forms of relational reasoning work together in the performance of complex problem solving. Finally, I will share critical next steps for research which has implications for instructional practice.
Improving the assessment of SYNGAP1 and related genetic conditions by creating online measures for parents and patients
Multimorbidity in the ageing human brain: lessons from neuropathological assessment
Age-associated dementias are neuropathologically characterized by the identification of hallmark intracellular and extracellular deposition of proteins, i.e., hyperphosphorylated-tau, amyloid-β, and α-synuclein, or cerebrovascular lesions. The neuropathological assessment and staging of these pathologies allows for a diagnosis of a distinct disease, e.g., amyloid-β plaques and hyperphosphorylated tau pathology in Alzheimer's disease. Neuropathological assessment in large scale cohorts, such as the UK’s Brains for Dementia Research (BDR) programme, has made it increasingly clear that the ageing brain is characterized by the presence of multiple age-associated pathologies rather than just the ‘pure’ hallmark lesion as commonly perceived. These additional pathologies can range from low/intermediate levels, that are assumed to have little if any clinical significance, to a full-blown mixed disease where there is the presence of two distinct diseases. In our recent paper (McAleese et al. 2021 Concomitant neurodegenerative pathologies contribute to the transition from mild cognitive impairment to dementia, https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12291, Alzheimer's & Dementia), using the BDR cohort, we investigated the frequency of multimorbidity and specifically investigated the impact of additional low-level pathology on cognition. In this study, of 670 donated post-mortem brains, we found that almost 70% of cases exhibited multimorbidity and only 22% were considered a pure diagnosis. Importantly, no case of Lewy Body dementia or vascular dementia was considered pure. A key finding is that the presence of low levels of additional pathology increased the likelihood of having mild dementia vs mild cognitive impairment by almost 20-fold, indicating low levels of additional pathology do impact the clinical progression of a distinct disease. Given the high prevalence and the potential clinical impact, cerebral multimorbidity should be at the forefront of consideration in dementia research.
The neuroscience of color and what makes primates special
Among mammals, excellent color vision has evolved only in certain non-human primates. And yet, color is often assumed to be just a low-level stimulus feature with a modest role in encoding and recognizing objects. The rationale for this dogma is compelling: object recognition is excellent in grayscale images (consider black-and-white movies, where faces, places, objects, and story are readily apparent). In my talk I will discuss experiments in which we used color as a tool to uncover an organizational plan in inferior temporal cortex (parallel, multistage processing for places, faces, colors, and objects) and a visual-stimulus functional representation in prefrontal cortex (PFC). The discovery of an extensive network of color-biased domains within IT and PFC, regions implicated in high-level object vision and executive functions, compels a re-evaluation of the role of color in behavior. I will discuss behavioral studies prompted by the neurobiology that uncover a universal principle for color categorization across languages, the first systematic study of the color statistics of objects and a chromatic mechanism by which the brain may compute animacy, and a surprising paradoxical impact of memory on face color. Taken together, my talk will put forward the argument that color is not primarily for object recognition, but rather for the assessment of the likely behavioral relevance, or meaning, of the stuff we see.
Blindspot: Hidden Biases of Good People
Mahzarin Banaji and her colleague coined the term “implicit bias” in the mid-1990s to refer to behavior that occurs without conscious awareness. Today, Professor Banaji is Cabot Professor of Social Ethics in the Department of Psychology at Harvard University, a member of the American Academy of Arts and Sciences, the National Academy of Sciences and has received numerous awards for her scientific contributions. The purpose of the seminar, Blindspot: Hidden Biases of Good People, is to reveal the surprising and even perplexing ways in which we make errors in assessing and evaluating others when we recruit and hire, onboard and promote, lead teams, undertake succession planning, and work on behalf of our clients or the public we serve. It is Professor Banaji’s belief that people intend well and that the inconsistency we see, between values and behavior, comes from a lack of awareness. But because implicit bias is pervasive, we must rely on scientific evidence to “outsmart” our minds. If we do so, we will be more likely to reach the life goals we have chosen for ourselves and to serve better the organizations for which we work.
Organization and control of hippocampal circuits in epilepsy
Basket cells are key GABAergic inhibitory interneurons that target the somata and proximal dendrites, enabling efficient control of the timing and rate of spiking of their postsynaptic targets. In all cortical circuits, there are two major types of basket cell that exhibit striking developmental, molecular, anatomical, and physiological differences. In this talk, I will discuss recent results that reveal the tightly coupled complementarity of these two key microcircuit regulatory modules, demonstrating a novel form of brain-state-specific segregation of inhibition during spontaneous behavior, with implications for the assessment of dysregulated inhibition in epilepsy. In addition, I will describe recent advances in our understanding of the spatio-temporal dynamics of endocannabinoid signaling in hippocampal circuits and discuss how abnormal amplification of these activity-dependent signaling processes leads to surprising downstream effects in seizures.
Cellular/circuit dysfunction across development in a model of Dravet syndrome
Dravet syndrome (DS) is a neurodevelopmental disorder caused by heterozygous loss-of-function of the gene SCN1A encoding the voltage-gated sodium channel subunit Nav1.1, and is defined by treatment-resistant epilepsy, intellectual impairment, and sudden death. However, disease mechanisms remain unclear, as previously-identified deficiency in action potential generation of Nav1.1-expressing parvalbumin-positive fast-spiking GABAergic interneurons (PV-INs) in DS (Scn1a+/-) mice normalizes during development. We used a novel approach that facilitated the assessment of PV-IN function at both early (post-natal day (P) 16-21) and late (P35-56) time points in the same mice. We confirmed that PV-IN spike generation was impaired at P16-21 in all mice (those deceased from SUDEP by P35 and those surviving to P35-56). However, unitary synaptic transmission assessed in PV-IN:principal cell paired recordings was severely dysfunctional selectively in mice recorded at P16-21 that did not survive to P35. Spike generation in surviving mice had normalized by P35-56; yet we again identified abnormalities in synaptic transmission in surviving mice. We propose that early dysfunction of PV-IN spike propagation drives epilepsy severity and risk of sudden death, while persistent dysfunction of spike propagation contributes to chronic DS pathology.
Reward processing in psychosis: adding meanings to the findings
Much of our daily behavior is driven by rewards. The ability to learn to pursue rewarding experiences is, in fact, an essential metric of mental health. Conversely, reduced capacity to engage in adaptive goal-oriented behavior is the hallmark of apathy, and present in the psychotic disorder. The search for its underlying mechanisms has resulted in findings of profound impairments in learning from rewards and the associated blunted activation in key reward areas of the brain of patients with psychosis. An emerging research field has been relying on digital phenotyping tools and ecological momentary assessments (EMA) that map patients’ current mood, behavior and context in the flow of their daily lives. Using these tools, we have started to see a different picture of apathy, one that is exquisitely driven by the environment. For one, reward sensitivity appears to be blunted by stressors, and exposure to undue chronic stress in the daily life may result in apathy in those predisposed to psychosis. Secondly, even patients with psychosis who exhibit clinically elevated levels of apathy are perfectly capable of seeking out and enjoying social interactions in their daily life, if their environment allows them to do so. The use of digital phenotyping tools in combination with neuroimaging of apathy not only allows us to add meanings to the neurobiological findings, but could also help design rational interventions.
Is it Autism or Alexithymia? explaining atypical socioemotional processing
Emotion processing is thought to be impaired in autism and linked to atypical visual exploration and arousal modulation to others faces and gaze, yet evidence is equivocal. We propose that, where observed, atypical socioemotional processing is due to alexithymia, a distinct but frequently co-occurring condition which affects emotional self-awareness and Interoception. In study 1 (N = 80), we tested this hypothesis by studying the spatio-temporal dynamics and entropy of eye-gaze during emotion processing tasks. Evidence from traditional and novel methods revealed that atypical eye-gaze and emotion recognition is best predicted by alexithymia in both autistic and non-autistic individuals. In Study 2 (N = 70), we assessed interoceptive and autonomic signals implicated in socioemotional processing, and found evidence for alexithymia (not autism) driven effects on gaze and arousal modulation to emotions. We also conducted two large-scale studies (N = 1300), using confirmatory factor-analytic and network modelling and found evidence that Alexithymia and Autism are distinct at both a latent level and their intercorrelations. We argue that: 1) models of socioemotional processing in autism should conceptualise difficulties as intrinsic to alexithymia, and 2) assessment of alexithymia is crucial for diagnosis and personalised interventions in autism.
Development of Sara-home: a novel assessment tool for patients with ataxia
Biomarkers for Addiction Treatment Development: fMRI Drug Cue Reactivity as an Example
This webinar is mainly focused on “Biomarkers for Addiction Treatment Development: fMRI Drug Cue Reactivity as an Example”. Biomarkers and Biotypes of Drug Addiction: funding opportunities at NIDA, Tanya Ramey (NIDA, US) Neuroimaging-based Biomarker Development for Clinical Trials, Owen Carmicheal (Pennington Biomedical Research Center, USA) ENIGMA-Addiction Cue Reactivity Initiative (ACRI) and Checklist, Hamed Ekhtiari (Laureate Institute for Brain Research, USA) ENIGMA-ACRI Checklist: Participant Characteristics, General fMRI Information, General Task Information, Cue Information, Task-related Assessments, Pre-Post Scanning Consideration (James Prisciandaro, Medical University of South Carolina, USA; Marc Kaufman, McLean Hospital/Harvard Medical School, USA; Anna Zilverstand, University of Minnesota; Torsten Wüstenberg, Charité Medical University Berlin, Germany; Falk Kiefer, University of Heidelberg, Germany; Amy Janes, Harvard Medical School, USA) How to Add fMRI Drug Cue Reactivity to the ENIGMA Consortium: Road Ahead, Hugh Garavan, University of Vermont)
Affordable Robots/Computer Systems to Identify, Assess, and Treat Impairment After Brain Injury
Non-traumatic brain injury due to stroke, cerebral palsy and HIV often result in serious long-term disability worldwide, affecting more than 150 million persons globally; with the majority of persons living in low and middle income countries. These diseases often result in varying levels of motor and cognitive impairment due to brain injury which then affects the person’s ability to complete activities of daily living and fully participate in society. Increasingly advanced technologies are being used to support identification, diagnosis, assessment, and therapy for patients with brain injury. Specifically, robot and mechatronic systems can provide patients, physicians and rehabilitation clinical providers with additional support to care for and improve the quality of life of children and adults with motor and cognitive impairment. This talk will provide a brief introduction to the area of rehabilitation robotics and, via case studies, illustrate how computer/technology-assisted rehabilitation systems can be developed and used to assess motor and cognitive impairment, detect early evidence of functional impairment, and augment therapy in high and low-resource settings.
VAME outperforms conventional assessment of behavioral changes and treatment efficacy in Alzheimer’s mouse models
COSYNE 2025
Assessment of adverse drug effects on cognitive function in cynomolgus macaques using an automated touchscreen-based CANTAB device
FENS Forum 2024
Assessment of gradual perceptual learning by behaviour and neuron-glia imaging in AD model mice
FENS Forum 2024
Assessment of metabolome in the tumor microenvironment by cerebral open flow microperfusion (cOFM) in a human glioblastoma xenograft animal model
FENS Forum 2024
Assessment of neurorestorative properties of intranasally administered colostrum-derived exosomes in the periventricular leukomalacia model
FENS Forum 2024
Assessment of Purkinje neuron degeneration in the flocculus vs. medial cerebellum in a mouse model of spinocerebellar ataxia type 13 (SCA13)
FENS Forum 2024
Assessment of students' quality of life and attentional stability in emergency situations
FENS Forum 2024
Assessment of task-specific glucose metabolism with non-invasive functional PET
FENS Forum 2024
Behavioral assessment of cognitive models of schizophrenia using novel mouse CANTAB-like test battery
FENS Forum 2024
A behavioural assessment to characterize different stages of memory impairment in humanized APP knock-in mouse models across various ages
FENS Forum 2024
A brainstem neural circuit for instinctive assessment and escape in mice
FENS Forum 2024
Case report: Assessment of progenitor and neuronal cell populations in a fetal case of hemimegalencephaly
FENS Forum 2024
Clinical utility of advanced neuroimaging modalities for epilepsy surgery assessment
FENS Forum 2024
Combined restraint stress and metal exposure paradigms in rats; cognitive assessment, brain oxidative stress, caspase-3 mediated responses, microglial activation, and myelin health
FENS Forum 2024
Development of a novel VR-based system for quantitative assessment of freezing of gait in Parkinson disease
FENS Forum 2024
Evaluation of running wheel behavior as a reliable marker for severity assessment and humane endpoint detection in a rat model with intracranial tumor
FENS Forum 2024
New fluorescent molecular probes for ex vivo assessment of neurodegenerative protein conformational pathology
FENS Forum 2024
Hostile biases assessment battery
FENS Forum 2024
Longitudinal assessment of behaviour and neuronal activity in the lateral habenula in a mouse model of depression
FENS Forum 2024
Longitudinal assessment of neurodegeneration in a mouse model of tauopathy using multiparametric magnetic resonance imaging
FENS Forum 2024
Longitudinal assessment of ALS patient-derived motor neurons reveals altered network dynamics and synaptic impairment
FENS Forum 2024
Neuro-immunobiology in a mouse model of anti-NMDAR encephalitis and assessment of treatment approaches
FENS Forum 2024
Neuronal activities during a VR-based assessment for Autism Spectrum Disorder: A pilot EEG study
FENS Forum 2024
Polymeric nanoparticles as drug delivery tools for brain degenerative disorders: In vitro assessment and drug release properties
FENS Forum 2024
Relation of topological patterns of brain network with cognitive phenotypes identified by robotic assessment in patients with temporal lobe epilepsy
FENS Forum 2024
Robust assessment of the neural encoding of lexical information using the Temporal Response Function
FENS Forum 2024
Self-supervised learning using Geometric Assessment-driven Topological Smoothing (GATS) for neuron tracing and Active Learning Environment (NeuroTrALE)
FENS Forum 2024
Severity assessment in the unilateral and bilateral 6-OHDA rat Parkinson model: Telemetric monitoring of heart rate and activity
FENS Forum 2024
Synthesis, molecular docking and motor function assessment of a novel diaryl pyrrole compound following the unilateral 6-hydroxydopamine lesion model in male rats
FENS Forum 2024
In vitro assessment of the neural regenerative properties of regenerative macrophages (REMaST®)
FENS Forum 2024
Whole-brain mapping and behavioural assessments of the effect of different doses of LSD in mice
FENS Forum 2024
The Fractal Geometry of Alzheimer’s disease Toward Better Cognitive Assessment
Neuromatch 5