Awake
awake
Combined electrophysiological and optical recording of multi-scale neural circuit dynamics
This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.
Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep
The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.
Cortical seizure mechanisms: insights from calcium, glutamate and GABA imaging
Focal neocortical epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood, but is likely to relate to the intermittent collapse of feed-forward GABAergic inhibition. Inhibition could fail through multiple mechanisms, including (i) an attenuation or even reversal of the driving force for chloride in postsynaptic neurons because of intense activation of GABAA receptors, (ii) an elevation of potassium secondary to chloride influx leading to depolarization of neurons, or (iii) insufficient GABA release from interneurons. I shall describe the results of experiments using fluorescence imaging of calcium, glutamate or GABA in awake rodent models of neocortical epileptiform activity. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagatedcentrifugally. GABA transients lasted longer than glutamate transients and were maximal ~1.5 mm from the focus. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing runaway recruitment of excitatory neurons as a fundamental mechanism underlying the escape of seizures from local inhibitory restraint.
The medial prefrontal cortex replays generalized sequences
Whilst spatial navigation is a function ascribed to the hippocampus, flexibly adapting to a change in rule depends on the medial prefrontal cortex (mPFC). Single-units were recorded from the hippocampus and mPFC of rats shifting between a spatially- and cue-guided rule on a plus-maze. The mPFC population coded for the relative position between start and goal arm. During awake immobility periods, the mPFC replayed organized sequences of generalized positions which positively correlated with rule-switching performance. Conversely, hippocampal replay negatively correlated with performance and occurred independently of mPFC replay. Sequential replay in the hippocampus and mPFC may thus serve different functions.
Extrinsic control and intrinsic computation in the hippocampal CA1 network
A key issue in understanding circuit operations is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Several studies have lesioned or silenced inputs to area CA1 of the hippocampus - either area CA3 or the entorhinal cortex and examined the effect on CA1 pyramidal cells. However, the types of the reported physiological impairments vary widely, primarily because simultaneous manipulations of these redundant inputs have never been performed. In this study, I combined optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of CA3. I combined this with high spatial resolution extracellular recordings along the CA1-dentate axis. Silencing the medial entorhinal largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields. In contrast to these results, unilateral mEC manipulations that were ineffective in impacting place cells during awake behavior were found to alter sharp-wave ripple sequences activated during sleep. Thus, intrinsic excitatory-inhibitory circuits within CA1 can generate neuronal assemblies in the absence of external inputs, although external synaptic inputs are critical to reconfigure (remap) neuronal assemblies in a brain-state dependent manner.
Cross-modality imaging of the neural systems that support executive functions
Executive functions refer to a collection of mental processes such as attention, planning and problem solving, supported by a frontoparietal distributed brain network. These functions are essential for everyday life. Specifically in the context of patients with brain tumours there is a need to preserve them in order to enable good quality of life for patients. During surgeries for the removal of a brain tumour, the aim is to remove as much as possible of the tumour and at the same time prevent damage to the areas around it to preserve function and enable good quality of life for patients. In many cases, functional mapping is conducted during an awake surgery in order to identify areas critical for certain functions and avoid their surgical resection. While mapping is routinely done for functions such as movement and language, mapping executive functions is more challenging. Despite growing recognition in the importance of these functions for patient well-being in recent years, only a handful of studies addressed their intraoperative mapping. In the talk, I will present our new approach for mapping executive function areas using electrocorticography during awake brain surgery. These results will be complemented by neuroimaging data from healthy volunteers, directed at reliably localizing executive function regions in individuals using fMRI. I will also discuss more broadly challenges ofß using neuroimaging for neurosurgical applications. We aim to advance cross-modality neuroimaging of cognitive function which is pivotal to patient-tailored surgical interventions, and will ultimately lead to improved clinical outcomes.
CNStalk: Being awake while asleep, being asleep while awake
How does the metabolically-expensive mammalian brain adapt to food scarcity?
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. I addressed this in the visual cortex of awake mice using whole-cell recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. I found that food restriction reduced synaptic ATP usage by 29% through a decrease in AMPA receptor conductance. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.
Inferring informational structures in neural recordings of drosophila with epsilon-machines
Measuring the degree of consciousness an organism possesses has remained a longstanding challenge in Neuroscience. In part, this is due to the difficulty of finding the appropriate mathematical tools for describing such a subjective phenomenon. Current methods relate the level of consciousness to the complexity of neural activity, i.e., using the information contained in a stream of recorded signals they can tell whether the subject might be awake, asleep, or anaesthetised. Usually, the signals stemming from a complex system are correlated in time; the behaviour of the future depends on the patterns in the neural activity of the past. However these past-future relationships remain either hidden to, or not taken into account in the current measures of consciousness. These past-future correlations are likely to contain more information and thus can reveal a richer understanding about the behaviour of complex systems like a brain. Our work employs the "epsilon-machines” framework to account for the time correlations in neural recordings. In a nutshell, epsilon-machines reveal how much of the past neural activity is needed in order to accurately predict how the activity in the future will behave, and this is summarised in a single number called "statistical complexity". If a lot of past neural activity is required to predict the future behaviour, then can we say that the brain was more “awake" at the time of recording? Furthermore, if we read the recordings in reverse, does the difference between forward and reverse-time statistical complexity allow us to quantify the level of time asymmetry in the brain? Neuroscience predicts that there should be a degree of time asymmetry in the brain. However, this has never been measured. To test this, we used neural recordings measured from the brains of fruit flies and inferred the epsilon-machines. We found that the nature of the past and future correlations of neural activity in the brain, drastically changes depending on whether the fly was awake or anaesthetised. Not only does our study find that wakeful and anaesthetised fly brains are distinguished by how statistically complex they are, but that the amount of correlations in wakeful fly brains was much more sensitive to whether the neural recordings were read forward vs. backwards in time, compared to anaesthetised brains. In other words, wakeful fly brains were more complex, and time asymmetric than anaesthetised ones.
Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice
Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.
NMC4 Short Talk: Stretching and squeezing of neuronal log firing rate distribution by psychedelic and intrinsic brain state transitions
How psychedelic drugs change the activity of cortical neuronal populations is not well understood. It is also not clear which changes are specific to transition into the psychedelic brain state and which are shared with other brain state transitions. Here, we used Neuropixels probes to record from large populations of neurons in prefrontal cortex of mice given the psychedelic drug TCB-2. The primary effect of drug ingestion was stretching of the distribution of log firing rates of the recorded population. This phenomenon was previously observed across transitions between sleep and wakefulness, which prompted us to examine how common it is. We found that modulation of the width of the log-rate distribution of a neuronal population occurred in multiple areas of the cortex and in the hippocampus even in awake drug-free mice, driven by intrinsic fluctuations in their arousal level. Arousal, however, did not explain the stretching of the log-rate distribution by TCB-2. In both psychedelic and intrinsically occurring brain state transitions, the stretching or squeezing of the log-rate distribution of an entire neuronal population were the result of a more close overlap between log-rate distributions of the upregulated and downregulated subpopulations in one brain state compared to the other brain state. Often, we also observed that the log-rate distribution of the downregulated subpopulation was stretched, whereas the log-rate distribution of the upregulated subpopulation was squeezed. In both subpopulations, the stretching and squeezing were a signature of a greater relative impact of the brain state transition on the rates of the slow-firing neurons. These findings reveal a generic pattern of reorganisation of neuronal firing rates by different kinds of brain state transitions.
Being awake while sleeping, being asleep while awake: consequences on cognition and consciousness
Sleep is classically presented as an all-or-nothing phenomenon. Yet, there is increasing evidence showing that sleep and wakefulness can actually intermingle and that wake-like and sleep-like activity can be observed concomitantly in different brain regions. I will here explore the implications of this conception of sleep as a local phenomenon for cognition and consciousness. In the first part of my presentation, I will show how local modulations of sleep depth during sleep could support the processing of sensory information by sleepers. I will also how, under certain circumstances, sleepers can learn while sleeping but also how they can forget. In the second part, I will show how the reverse phenomenon, sleep intrusions during waking, can explain modulations of attention. I will focus in particular on modulations of subjective experience and how the local sleep framework can inform our understanding of everyday phenomena such as mind wandering and mind blanking. Through this presentation and the exploration of both sleep and wakefulness, I will seek to connect changes in neurophysiology with changes in behaviour and subjective experience.
Will it keep me awake? Common caffeine intake habits and sleep in real life situations
Daily caffeine consumption and chronic sleep restriction are highly prevalent in society. It is well established that acute caffeine intake under controlled conditions enhances vigilance and promotes wakefulness but can also delay sleep initiation and reduce electroencephalographic (EEG) markers of sleep intensity, particularly in susceptible individuals. To investigate whether these effects are also present during chronic consumption of coffee/caffeine, we recently conducted several complementary studies. We examined whether repeated coffee intake in dose and timing mimicking ‘real world’ habits maintains simple and complex attentional processes during chronic sleep restriction, such as during a busy work week. We found in genetically caffeine-sensitive individuals that regular coffee (300 mg caffeine/day) benefits most attentional tasks for 3-4 days when compared to decaffeinated coffee. Genetic variants were also used in the population-based HypnoLaus cohort, to investigate whether habitual caffeine consumption causally affects time to fall asleep, number of awakenings during sleep, and EEG-derived sleep intensity. The multi-level statistical analyses consistently showed that sleep quality was virtually unaffected when >3 caffeine-containing beverages/day were compared to 0-3 beverages/day. This conclusion was further corroborated by quantifying the sleep EEG in the laboratory in habitual caffeine consumers. Compared to placebo, daily intake of 3 x 150 mg caffeine over 10 days did not strongly impair nocturnal sleep nor subjective sleep quality in good sleepers. Finally, we tested whether an engineered delayed, pulsatile-release caffeine formula can improve the quality of morning awakening in sleep-restricted volunteers. We found that 160 mg caffeine taken at bedtime ameliorated the quality of awakening, increased positive and reduced negative affect scores, and promoted sustained attention immediately upon scheduled wake-up. Such an approach could prevent over-night caffeine withdrawal and provide a proactive strategy to attenuate disabling sleep inertia. Taken together, the studies suggest that common coffee/caffeine intake habits can transiently attenuate detrimental consequences of reduced sleep virtually without disturbing subjective and objective markers of sleep quality. Nevertheless, coffee/caffeine consumption cannot compensate for chronic sleep restriction.
Context-Dependent Relationships between Locus Coeruleus Firing Patterns and Coordinated Neural Activity in the Anterior Cingulate Cortex
Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when tonic (baseline) LC activity increases but are enhanced when external events drive phasic LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.
Neocortex saves energy by reducing coding precision during food scarcity
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. We addressed this in the visual cortex of awake mice using whole-cell patch clamp recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. We found that food restriction resulted in energy savings through a decrease in AMPA receptor conductance, reducing synaptic ATP usage by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.
Learning from unexpected events in the neocortical microcircuit
Predictive learning hypotheses posit that the neocortex learns a hierarchical model of the structure of features in the environment. Under these hypotheses, expected or predictable features are differentiated from unexpected ones by comparing bottom-up and top-down streams of data, with unexpected features then driving changes in the representation of incoming stimuli. This is supported by numerous studies in early sensory cortices showing that pyramidal neurons respond particularly strongly to unexpected stimulus events. However, it remains unknown how their responses govern subsequent changes in stimulus representations, and thus, govern learning. Here, I present results from our study of layer 2/3 and layer 5 pyramidal neurons imaged in primary visual cortex of awake, behaving mice using two-photon calcium microscopy at both the somatic and distal apical planes. Our data reveals that individual neurons and distal apical dendrites show distinct, but predictable changes in unexpected event responses when tracked over several days. Considering existing evidence that bottom-up information is primarily targeted to somata, with distal apical dendrites receiving the bulk of top-down inputs, our findings corroborate hypothesized complementary roles for these two neuronal compartments in hierarchical computing. Altogether, our work provides novel evidence that the neocortex indeed instantiates a predictive hierarchical model in which unexpected events drive learning.
Arousal modulates retinal output
Neural responses in the visual system are usually not purely visual but depend on behavioural and internal states such as arousal. This dependence is seen both in primary visual cortex (V1) and in subcortical brain structures receiving direct retinal input. In this talk, I will show that modulation by behavioural state arises as early as in the output of the retina.To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superficial superior colliculus (sSC) of mice. The activity of about half of the boutons depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced the boutons’ visual responses to preferred direction and their selectivity for direction and orientation.Arousal may affect activity in retinal boutons by presynaptic neuromodulation. To test whether the effects of arousal occur already in the retina, we recorded from retinal axons in the optic tract. We found that, in darkness, more than one third of the recorded axons was significantly correlated with running speed. Arousal had similar effects postsynaptically, in sSC neurons, independent of activity in V1, the other main source of visual inputs to colliculus. Optogenetic inactivation of V1 generally decreased activity in collicular neurons but did not diminish the effects of arousal. These results indicate that arousal modulates activity at every stage of the visual system. In the future, we will study the purpose and the underlying mechanisms of behavioural modulation in the early visual system
Neural Mechanisms of Coordination in Duetting Wrens
To communicate effectively, two individuals must take turns to prevent overlap in their signals. How does the nervous system coordinate vocalizations between two individuals? Female and male plain-tailed wrens sing a duet in which they alternate syllable production so rapidly and precisely it sounds as if a single bird is singing. I will talk about experiments that examine the interaction between sensory cues and motor activity, using behavioral manipulations and neurophysiological recordings from pairs of awake, duetting wrens. I will show evidence that auditory cues link the brains of the wrens by modulating motor circuits.
Local sleep regulation and its implications for cognition and brain plasticity
Sleep has been classically described as an all-or-nothing global phenomenon. However, a growing body of evidence indicates that typical sleep hallmarks, such as slow waves and spindles, occur and are regulated locally. I will present here evidence indicating that slow waves, in particular, may be related with, and offer a read-out of, local and long-range brain connectivity. In fact, slow waves do not only track changes related to both experience-dependent plasticity and brain maturation during development, but also appear to be actively involved in the fine regulation of brain plasticity and in the removal of metabolic wastes. I will also show that, consistent with a local regulation of sleep, slow waves can often occur locally during wakefulness, with an incidence that varies as a function of time spent awake and of previous rest. These waking slow waves are associated with impaired performance during cognitive tasks and may contribute to explain attention lapses and errors commonly associated with insufficient sleep.
Awakening: Predicting external stimulation to force transitions between different brain states
The Role of Hippocampal Replay in Memory Consolidation
The hippocampus lies at the centre of a network of brain regions thought to support spatial and episodic memory. Place cells - the principal cell of the hippocampus, represent information about an animal’s spatial location. Yet, during rest and awake quiescence place cells spontaneously recapitulate past trajectories (‘replay’). Replay has been hypothesised to support systems consolidation – the stabilisation of new memories via maturation of complementary cortical memory traces. Indeed, in recent work we found place and grid cells, from the deep medial entorhinal cortex (dMEC, the principal cortical output region of the hippocampus), replayed coherently during rest periods. Importantly, dMEC grid cells lagged place cells by ~11ms; suggesting the coordination may reflect consolidation. Moreover, preliminary data shows that the dMEC-hippocampal coordination strengthens as an animal becomes familiar with a task and that it may be led by directionally modulated cells. Finally, on-going work, in my recently established lab, shows replay may represent the mechanism underlying the maturation of episodic/spatial memory in pre-weanling pups. Together, these results indicate replay may play a central role in ensuring the permanency of memories.
Blood is thicker than water
According to Hamilton’s inclusive fitness hypothesis, kinship is an organizing principle of social behavior. Behavioral evidence supporting this hypothesis includes the ability to recognize kin and the adjustment of behavior based on kin preference with respect to altruism, attachment and care for offspring in insect societies. Despite the fundamental importance of kinship behavior, the underlying neural mechanisms are poorly understood. We repeated behavioral experiments by Hepper on behavioral preference of rats for their kin. Consistent with Hepper’s work, we find a developmental time course for kinship behavior, where rats prefer sibling interactions at young ages and express non-sibling preferences at older ages. In probing the brain areas responsible for this behavior, we find that aspiration lesions of the lateral septum but not control lesions of cingulate cortices eliminate the behavioral preference in young animals for their siblings and in older rats for non-siblings. We then presented awake and anaesthetized rats with odors and calls of age- and status-matched kin (siblings and mothers) and non-kin (non-siblings and non-mothers) conspecifics, while performing in vivo juxta-cellular and whole-cell patch-clamp recordings in the lateral septum. We find multisensory (olfactory and auditory) neuronal responses, whereby neurons typically responded preferentially but not exclusively to individual social stimuli. Non-kin-odor responsive neurons were found dorsally, while kin-odor responsive neurons were located in ventrally in the lateral septum. To our knowledge such an ordered representation of response preferences according to kinship has not been previously observed and we refer this organization as nepotopy. Nepotopy could be instrumental in reading out kinship from preferential but not exclusive responses and in the generation of differential behavior according to kinship. Thus, our results are consistent with a role of the lateral septum in organizing mammalian kinship behavior.
Plasticity in hypothalamic circuits for oxytocin release
Mammalian babies are “sensory traps” for parents. Various sensory cues from the newborn are tremendously efficient in triggering parental responses in caregivers. We recently showed that core aspects of maternal behavior such as pup retrieval in response to infant vocalizations rely on active learning of auditory cues from pups facilitated by the neurohormone oxytocin (OT). Release of OT from the hypothalamus might thus help induce recognition of different infant cues but it is unknown what sensory stimuli can activate OT neurons. I performed unprecedented in vivo whole-cell and cell-attached recordings from optically-identified OT neurons in awake dams. I found that OT neurons, but not other hypothalamic cells, increased their firing rate after playback of pup distress vocalizations. Using anatomical tracing approaches and channelrhodopsin-assisted circuit mapping, I identified the projections and brain areas (including inferior colliculus, auditory cortex, and posterior intralaminar thalamus) relaying auditory information about social sounds to OT neurons. In hypothalamic brain slices, when optogenetically stimulating thalamic afferences to mimic high-frequency thalamic discharge, observed in vivo during pup calls playback, I found that thalamic activity led to long-term depression of synaptic inhibition in OT neurons. This was mediated by postsynaptic NMDARs-induced internalization of GABAARs. Therefore, persistent activation of OT neurons following pup calls in vivo is likely mediated by disinhibition. This gain modulation of OT neurons by infant cries, may be important for sustaining motivation. Using a genetically-encoded OT sensor, I demonstrated that pup calls were efficient in triggering OT release in downstream motivational areas. When thalamus projections to hypothalamus were inhibited with chemogenetics, dams exhibited longer latencies to retrieve crying pups, suggesting that the thalamus-hypothalamus noncanonical auditory pathway may be a specific circuit for the detection of social sounds, important for disinhibiting OT neurons, gating OT release in downstream brain areas, and speeding up maternal behavior.
An evolutionarily conserved hindwing circuit mediates Drosophila flight control
My research at the interface of neurobiology, biomechanics, and behavior seeks to understand how the timing precision of sensory input structures locomotor output. My lab studies the flight behavior of the fruit fly, Drosophila melanogaster, combining powerful genetic tools available for labeling and manipulating neural circuits with cutting-edge imaging in awake, behaving animals. This work has the potential to fundamentally reshape understanding of the evolution of insect flight, as well as highlight the tremendous importance of timing in the context of locomotion. Timing is crucial to the nervous system. The ability to rapidly detect and process subtle disturbances in the environment determines whether an animal can attain its next meal or successfully navigate complex, unpredictable terrain. While previous work on various animals has made tremendous strides uncovering the specialized neural circuits used to resolve timing differences with sub-microsecond resolution, it has focused on the detection of timing differences in sensory systems. Understanding of how the timing of motor output is structured by precise sensory input remains poor. My research focuses on an organ unique to fruit flies, called the haltere, that serves as a bridge for detecting and acting on subtle timing differences, helping flies execute rapid maneuvers. Understanding how this relatively simple insect canperform such impressive aerial feats demands an integrative approach that combines physics, muscle mechanics, neuroscience, and behavior. This unique, powerful approach will reveal the general principles that govern sensorimotor processing.
Microneurography And Microstimulation Of Single Tactile Afferents In The Human Hand
Microneurography is a method, invented by Ake Vallbo and Karl-Erik Hagbarth in the late 1960, with which we can record the activity from single, identified nerve fibres in awake human participants. In this talk, I will then discuss the method, its advantages and limitations, and some of the key discoveries regarding coding of tactile events in the signalling from receptors in the human skin. An extension of the method is to stimulate single afferents, and record the resulting tactile sensations reported by the participants, so-called microstimulation. The first experiments were done in the 1980s, but the method has recently seen a revival, and is currently being combined with high-resolution brain imaging in the study of the relationship between tactile nerve signals, sensations, and processing of tactile information in the brain.
High-dimensional geometry of visual cortex
Interpreting high-dimensional datasets requires new computational and analytical methods. We developed such methods to extract and analyze neural activity from 20,000 neurons recorded simultaneously in awake, behaving mice. The neural activity was not low-dimensional as commonly thought, but instead was high-dimensional and obeyed a power-law scaling across its eigenvalues. We developed a theory that proposes that neural responses to external stimuli maximize information capacity while maintaining a smooth neural code. We then observed power-law eigenvalue scaling in many real-world datasets, and therefore developed a nonlinear manifold embedding algorithm called Rastermap that can capture such high-dimensional structure.
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference
Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots, and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory-inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization, as well as stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset, and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of awake monkey recordings. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function — fast sampling-based inference — and predict further properties of these motifs that can be tested in future experiments
Cortical plasticity
Plasticity shapes the brain during development, and mechanisms of plasticity continue into adulthood to enable learning and memory. Nearly all brain functions are influenced by past events, reinforcing the view that the confluence of plasticity and computation in the same circuit elements is a core component of biological intelligence. My laboratory studies plasticity in the cerebral cortex during development, and plasticity during behaviour that is manifest as cortical dynamics. I will describe how cortical plasticity is implemented by learning rules that involve not only Hebbian changes and synaptic scaling but also dendritic renormalization. By using advanced techniques such as optical measurements of single-synapse function and structure in identified neurons in awake behaving mice, we have recently demonstrated locally coordinated plasticity in dendrites whereby specific synapses are strengthened and adjacent synapses with complementary features are weakened. Together, these changes cooperatively implement functional plasticity in neurons. Such plasticity relies on the dynamics of activity-dependent molecules within and between synapses. Alongside, it is increasingly clear that risk genes associated with neurodevelopmental disorders disproportionately target molecules of plasticity. Deficits in renormalization contribute fundamentally to dysfunctional neuronal circuits and computations, and may be a unifying mechanistic feature of these disorders.
A human-specific modifier of synaptic development, cortical circuit connectivity and function
The remarkable cognitive abilities characterizing humans has been linked to unique patterns of connectivity characterizing the neocortex. Comparative studies have shown that human cortical pyramidal neurons (PN) receive a significant increase of synaptic inputs when compared to other mammals, including non-human primates and rodents, but how this may relate to changes in cortical connectivity and function remained largely unknown. We previously identified a human-specific gene duplication (HSGD), SRGAP2C, that, when induced in mouse cortical PNs drives human-specific features of synaptic development, including a correlated increase in excitatory (E) and inhibitory (I) synapse density through inhibition of the ancestral SRGAP2A protein (Charrier et al. 2012; Fossatti et al. 2016; Schmidt et al. 2019). However, the origin and nature of this increased connectivity and its impact on cortical circuit function was unknown. I will present new results exploring these questions (see Schmidt et al. (2020) https://www.biorxiv.org/content/10.1101/852970v1). Using a combination of transgenic approaches and quantitative monosynaptic tracing, we discovered that humanization of SRGAP2C expression in the mouse cortex leads to a specific increase in local and long-range cortico-cortical inputs received by layer 2/3 cortical PNs. Moreover, using in vivo two-photon imaging in the barrel cortex of awake mice, we show that humanization of SRGAP2C expression increases the reliability and selectivity of sensory- evoked responses in layer 2/3 PNs. We also found that mice humanized for SRGAP2C in all cortical pyramidal neurons and throughout development are characterized by improved behavioural performance in a novel whisker-based sensory discrimination task compared to control wild-type mice. Our results suggest that the emergence of SRGAP2C during human evolution underlie a new substrate for human brain evolution whereby it led to increased local and long-range cortico-cortical connectivity and improved reliability of sensory-evoked cortical coding. References cited Charrier C.*, Joshi K. *, Coutinho-Budd J., Kim, J-E., Lambert N., de Marchena, J., Jin W-L., Vanderhaeghen P., Ghosh A., Sassa T, and Polleux F. (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny of spine maturation. Cell 149:923-935. * Co-first authors. Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D, Polleux F*, Charrier C*. (2016) SRGAP2 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and Inhibitory Synapses. Neuron. 91(2):356-69. * Co-senior corresponding authors. Schmidt E.R.E., Kupferman J.V., Stackmann M., Polleux F. (2019) The human-specific paralogs SRGAP2 and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Scientific Rep. 9(1):18692. Schmidt E.R.E, Zhao H.T., Hillman E.M.C., Polleux F. (2020) Humanization of SRGAP2C expression increases cortico-cortical connectivity and reliability of sensory-evoked responses in mouse brain. Submitted. See also: https://www.biorxiv.org/content/10.1101/852970v1
Awake perception is associated with dedicated neuronal assemblies in cerebral cortex
COSYNE 2022
Awake rat MRI scanning - A contribution to the AwakeRodent multi-center, multi-species, multi-modality study
FENS Forum 2024
Brain-wide effects of cannabinoids, measured by functional ultrasound imaging, show strong correlation with CB1R activation and behavior in awake mice
FENS Forum 2024
Comprehensive characterization of cerebrovascular oxygenation dynamics in awake mice using high-resolution photoacoustic imaging
FENS Forum 2024
Constructing an artificial intelligence algorithm based on awake mouse brain calcium imaging as a rapid screening platform for the development of Parkinson's disease drugs
FENS Forum 2024
Cortico-subcortical dysconnectivity following opioid administration correlates with analgesia in the awake mouse brain
FENS Forum 2024
Dorsal hippocampal CA3-CA1 long-term plasticity and the effect of aerobic exercise in anaesthetised and awake sub-chronic phencyclidine rat model for schizophrenia
FENS Forum 2024
fMRI mapping of brain circuits during simple sound perception by awake rats
FENS Forum 2024
A hair-thin path to the deep brain activity of an awake mouse
FENS Forum 2024
High sensitivity mapping of brain-wide functional networks in awake mice using simultaneous multi-slice fUS imaging
FENS Forum 2024
Investigation and modulation of cortical excitability in awake rhesus macaques with non-invasive transcranial magnetic stimulation and electroencephalography
FENS Forum 2024
Lateralization of motor responses following focused ultrasound neuromodulation of the motor cortex and thalamus in awake mice
FENS Forum 2024
Modulation of dendritic voltage signaling in Purkinje neurons by molecular layer interneurons in awake mice
FENS Forum 2024
A novel MRI-compatible restrain setup for awake rat multimodal experiments
FENS Forum 2024
Real-time imaging of dopamine release and neuronal population dynamics in the motor cortex of awake mice – decoding of reward-related signals and movement parameters
FENS Forum 2024
A window into the awake avian brain: Resting-state network connectivity in pigeons
FENS Forum 2024