Basal Ganglia
basal ganglia
Arvind Kumar
We are interested in understanding how the basal ganglia and the cerebellum interact during a sensori-motor task. To this end we use both experimental data (multiunit activity and behavior) and computational models. On one hand we will record multiunit neuronal activity in the cerebellum and basal ganglia while animals perform a motor task. On the other hand we will use computational models to understand how activity in one brain region affects the representation of task related activity in the other area. More info: https://www.kth.se/profile/arvindku/page/postdoctoral-researcher-position
Prof Stephanie Cragg
Dopamine and astrocyte biology in health and Parkinson's disease. The Cragg Group at the University of Oxford are conducting an MRC-funded research project to explore the role of astrocytes in the regulation of striatal dopamine function in health and parkinsonism. We are now seeking to appoint a Postdoctoral Research Scientist with an interest in astrocyte biology to join us for this exciting project. The post-holder will explore striatal dopamine transmission, its regulation and dysregulation by activity in astrocytes, related circuits and signalling molecules in mouse brain. For advert and how to apply see: https://www.jobs.ac.uk/job/CPC368/post-doctoral-research-scientist-in-dopamine-and-astrocyte-biology-in-health-and-parkinsons-disease
Dr. Rebekah Evans
Post-doctoral position in cellular and systems neuroscience The Evans Lab at Georgetown University is looking for a post-doctoral fellow for cellular and systems neuroscience research in an NIH BRAIN Initiative-funded position. This post-doc will use electrophysiology and two-photon calcium imaging with simultaneous optogenetics to probe dendritic integration and circuitry of the extended basal ganglia including brainstem and dopaminergic neurons of the substantia nigra pars compacta in healthy and Parkinson’s Disease model mice. In addition, in vivo optogenetics and fiber photometry will be used to probe these circuits during behavior. Experience in electrophysiology and/or microscopy is a plus, but we can train a highly-motivated person on these techniques. Start date is flexible. Please see the Evans lab website: https://sites.google.com/view/evans-lab/home and contact Dr. Evans at re285@georgetown.edu with a letter of interest and CV.
John Pearson
The laboratories of Dr. Richard Mooney (https://www.neuro.duke.edu/mooney-lab) and Dr. John Pearson (http://pearsonlab.github.io) at Duke University are seeking two (2) postdoctoral scholars in conjunction with an NIH BRAIN Initiative-funded project investigating the contributions of basal ganglia to vocal motor exploration and reinforcement learning. Candidates will combine state of the art viral, electrophysiological, imaging, and computational methods and work as part of a multi-institution team that also includes Dr. Carlos Lois, in the Division of Biology and Biological Engineering at CalTech, and Dr. Tim Gardner, in the Phil and Penny Knight Campus for Accelerating Scientific Impact at the University of Oregon. The first postdoc, appointed in the Department of Neurobiology (https://careers.duke.edu/job/Durham-POSTDOCTORAL-ASSOCIATE-NC-27710/681792500/), will use behavioral, optogenetic, electrophysiological and optical imaging methods to explore how cortico-basal ganglia circuits contribute to vocal exploration and learning. Previous experience with imaging and electrophysiological methods is desirable, and experience using viral gene transfer methods to monitor and manipulate neural activity will be especially helpful. Candidates with strong quantitative skills and an interest in developing or improving computational skills are especially desired. This postdoc will work closely with a related postdoc hire in the Department of Biostatistics & Bioinformatics, as well as team members across all institutions. The second postdoc, appointed in the Department of Biostatistics & Bioinformatics (https://careers.duke.edu/job/Durham-POSTDOCTORAL-ASSOCIATE-NC-27710/681799400/), will perform computational modeling of reinforcement learning in the birdsong system, including development of new statistical machine learning methods for the analysis of song, electrophysiology, and calcium imaging data. The postdoc will work closely with experimentalists to design studies, analyze data, and refine hypotheses. Candidates should hold a PhD in a quantitative discipline such as computational neuroscience, physics, statistics, or computer science. Previous experience in neurobiology is a plus but not required. This postdoc will work closely with a related postdoc hire in the Department of Neurobiology, as well as team members across the other institutions.
Mark Richardson
The Brain Modulation Laboratory within the Department of Neurosurgery at Massachusetts General Hospital seeks to recruit a highly motivated and outstanding candidate to fill a postdoctoral associate position. This 3 to 5-year position is funded through a recently awarded NIH-NINDS U01 grant to Principal Investigator Mark Richardson, MD, PhD. The successful candidate will work in a highly interdisciplinary team, studying the role of cortical-basal ganglia networks during speech production, based on the analysis of intra operative local field potential and micro-electrode recording data acquired in the context of Deep Brain Stimulation implantation surgery. Co-investigators include Frank Guenther (BU), Nathan Crone (Johns Hopkins), Lori Holt (CMU), Julie Fiez (Pitt), and Rob Turner (Pitt).
Assistant Professor Nelson Totah
Brief project description: We all know what it feels like to stop ourselves just before making a mistake. How do we stop ourselves from making mistakes? This project will elucidate how the brain detects and stops in-progress mistakes. The postdoctoral scientist will have the opportunity to study single unit spiking and local field potentials in rats during near-mistake movements, which have only been previously studied using EEG in humans. The lab uses a state-of-the-art head-fixed rat-on-a-treadmill paradigm to measure near-mistake behaviors. Rats are trained to run when they see one stimulus and remain immobile when they see another. Near-mistakes occur when the rat initiates an incorrect running response, but realizes their mistake and stops before crossing a response threshold (running distance). Recordings from the anterior cingulate cortex, motor cortex, subthalamic nucleus, and globus pallidus will be used to describe how neural circuits enable response conflict detection and engage immediate action inhibition, as well as adjustments to future behavior after a near-mistake. Optogenetics will be used to link these behavioral neurophysiology findings to the structural connectivity of individual anterior cingulate neurons. Job specifics: • Prior experience with optogenetics experiments is highly beneficial. • Being a capable MATLAB programmer is a strong benefit, but there is also room to improve your programming skills. • Experience with LFP analyses (e.g., cross-region spike-field phase locking) is beneficial. • 5 years (40,800 EUR starting salary with annual raises) funded by the Academy of Finland. • Start date is flexible. The earliest is 1 November 2020. Resources in the lab: • Head-fixed rat-on-a-treadmill behavior with locomotion and pupil size tracking during complex cognitive tasks using visual, auditory, and whisker deflection sensory stimuli • Ultra-flexible, ultra-thin (1 um) multi-electrode probes (with collaborators) • Neuropixels and silicon probe recordings during head-fixed behavior • Active collaborations with computational neuroscientists Resources in Helsinki Institute of Life Science: • AAV Vector, Lenti Virus Vector, and CRISPR/Cas9 Cores • Drug Discovery Unit • Electron Microscopy Core • Small animal SPECT-CT If interested, contact Nelson Totah at nelson.totah@helsinki.fi with your CV and a motivation letter.
Paul Cisek
Doctoral studies in computational neuroscience, focusing on the neural mechanisms of embodied decision-making and action planning in humans and non-human primates. The research involves computational models of the nervous system integrated with behavioral experiments, transcranial magnetic stimulation, and multi-electrode recording in multiple regions of the cerebral cortex and basal ganglia. New projects will use virtual reality to study naturalistic behavior and develop theoretical models of distributed cortical and subcortical circuits.
Kenji Doya
Multiple open research positions at the Neural Computation Unit at OIST, including: 1. Theory and experimental investigation of Bayesian inference and reinforcement learning by the cortex, basal ganglia, and neuromodulator systems. 2. Data-driven construction of neural network models and large-scale simulation. 3. Application of wearable devices for monitoring mind and body state to support healthy life. 4. Flexible and robust reinforcement learning and meta-learning algorithms. 5. Development of smartphone robots for multi-agent learning and embodied evolution.
The basal ganglia and addiction
Developmental and evolutionary perspectives on thalamic function
Brain organization and function is a complex topic. We are good at establishing correlates of perception and behavior across forebrain circuits, as well as manipulating activity in these circuits to affect behavior. However, we still lack good models for the large-scale organization and function of the forebrain. What are the contributions of the cortex, basal ganglia, and thalamus to behavior? In addressing these questions, we often ascribe function to each area as if it were an independent processing unit. However, we know from the anatomy that the cortex, basal ganglia, and thalamus, are massively interconnected in a large network. One way to generate insight into these questions is to consider the evolution and development of forebrain systems. In this talk, I will discuss the developmental and evolutionary (comparative anatomy) data on the thalamus, and how it fits within forebrain networks. I will address questions including, when did the thalamus appear in evolution, how is the thalamus organized across the vertebrate lineage, and how can the change in the organization of forebrain networks affect behavioral repertoires.
Dopaminergic Network Dynamics
Cholinergic Interneurons
Honorary Lectures 2025
Schizophrenia and BG
SWEBAGS conference 2024: The basal ganglia in action
SWEBAGS conference 2024: Shared network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease: From modulation of oscillatory cortex – basal ganglia communication to intelligent clinical brain computer interfaces
SWEBAGS conference 2024: The involvement of the striatum in autism spectrum disorder
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Contribution of computational models of reinforcement learning to neurosciences/ computational modeling, reward, learning, decision-making, conditioning, navigation, dopamine, basal ganglia, prefrontal cortex, hippocampus
Basal Ganglia in Songbirds
Top-down models of learning and decision-making in BG
Cerebellum-Basal Ganglia Interactions
Updating our models of the basal ganglia using advances in neuroanatomy and computational modeling
Dopamine Acetylcholine interactions
Subthalamic nucleus
Honorary Lecture 2024
Imaging the subcortex; Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders
We are very much looking forward to host Francisca Ferreira and Birte Forstmann on December 14th, 2023, at noon ET / 6PM CET. Francisca Ferreira is a PhD student and Neurosurgery trainee at the University College of London Queen Square Institute of Neurology and a Royal College of Surgeons “Emerging Leaders” program laureate. Her presentation title will be: “Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders”. Birte Forstmann, PhD, is the Director of the Amsterdam Brain and Cognition Center, a Professor of Cognitive Neuroscience at the University of Amsterdam, and a Professor by Special Appointment of Neuroscientific Testing of Psychological Models at the University of Leiden. Besides her scientific presentation (“Imaging the human subcortex”), she will give us a glimpse at the “Person behind the science”. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
September webinar
Dopamine and Acetylcholine waves in the striatum
May Webinar
Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control
On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Richly structured reward predictions in dopaminergic learning circuits
Theories from reinforcement learning have been highly influential for interpreting neural activity in the biological circuits critical for animal and human learning. Central among these is the identification of phasic activity in dopamine neurons as a reward prediction error signal that drives learning in basal ganglia and prefrontal circuits. However, recent findings suggest that dopaminergic prediction error signals have access to complex, structured reward predictions and are sensitive to more properties of outcomes than learning theories with simple scalar value predictions might suggest. Here, I will present recent work in which we probed the identity-specific structure of reward prediction errors in an odor-guided choice task and found evidence for multiple predictive “threads” that segregate reward predictions, and reward prediction errors, according to the specific sensory features of anticipated outcomes. Our results point to an expanded class of neural reinforcement learning algorithms in which biological agents learn rich associative structure from their environment and leverage it to build reward predictions that include information about the specific, and perhaps idiosyncratic, features of available outcomes, using these to guide behavior in even quite simple reward learning tasks.
Off-policy learning in the basal ganglia
I will discuss work with Jack Lindsey modeling reinforcement learning for action selection in the basal ganglia. I will argue that the presence of multiple brain regions, in addition to the basal ganglia, that contribute to motor control motivates the need for an off-policy basal ganglia learning algorithm. I will then describe a biological implementation of such an algorithm that predicts tuning of dopamine neurons to a quantity we call "action surprise," in addition to reward prediction error. In the same model, an implementation of learning from a motor efference copy also predicts a novel solution to the problem of multiplexing feedforward and efference-related striatal activity. The solution exploits the difference between D1 and D2-expressing medium spiny neurons and leads to predictions about striatal dynamics.
Basal Ganglia in addiction
My evolution in invasive human neurophysiology: From basal ganglia single units to chronic electrocorticography; Therapies orchestrated by patients' own rhythms
On Thursday, April 27th, we will host Hayriye Cagnan and Philip A. Starr. Hayriye Cagnan, PhD, is an associate professor at the MRC Brain Network Dynamics Unit and University of Oxford. She will tell us about “Therapies orchestrated by patients’ own rhythms”. Philip A. Starr, MD, PhD, is a neurosurgeon and professor of Neurological Surgery at the University of California San Francisco. Besides his scientific presentation on “My evolution in invasive human neurophysiology: from basal ganglia single units to chronic electrocorticography”, he will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Computations performed in the basal ganglia
Altered dynamic information flow through the cortico-basal ganglia pathways is responsible for Parkinson’s disease symptoms
Classification of Dopamine Cells
Basal Ganglia
Beta oscillations in the basal ganglia: Past, Present and Future; Oscillatory signatures of motor symptoms across movement disorders
On Wednesday, January 25th, at noon ET / 6PM CET, we will host Roxanne Lofredi and Hagai Bergman. Roxanne Lofredi, MD, is a research fellow in the Movement Disorders and Neuromodulation Unit at Charité Universitätsmedizin Berlin. Hagai Bergman, MD, PhD, is a Professor of Physiology in the Edmond and Lily Safra Center for Brain Research and Faculty of Medicine at the Hebrew University of Jerusalem, and is Simone and Bernard Guttman Chair in Brain Research. Beside his scientific presentation on “Beta oscillations in the basal ganglia: Past, Present and Future”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Sampling the environment with body-brain rhythms
Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?
SWEBAGS conference 2022
SWEBAGS conference 2022
SWEBAGS conference 2022
November Webinar
Dopamine receptors dysregulation in BG disease
September webinar
PPN inputs to striatum
Dyskinesia: the failure of dopamine-dependent motor control
Learning in/about/from the basal ganglia
The basal ganglia are a collection of brain areas that are connected by a variety of synaptic pathways and are a site of significant reward-related dopamine release. These properties suggest a possible role for the basal ganglia in action selection, guided by reinforcement learning. In this talk, I will discuss a framework for how this function might be performed and computational results using an upward mapping to identify putative low-dimensional control ensembles that may be involved in tuning decision policy. I will also present some recent experimental results and theory – related to effects of extracellular ion dynamics -- that run counter to the classical view of basal ganglia pathways and suggest a new interpretation of certain aspects of this framework. For those not so interested in the basal ganglia, I hope that the upward mapping approach and impact of extracellular ion dynamics will nonetheless be of interest!
Visualising time in the human brain
We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.
GP and STN dynamics
Basal ganglia diseases in childhood
Visualization and manipulation of our perception and imagery by BCI
We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.
March webinar
Basal ganglia activity dynamics in health and disease
Honorary Lecture 2022
Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models
To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.
Reinforcement Learning
Pathogenesis of Parkison's Disease
Network dynamics in the basal ganglia and possible implications for Parkinson’s disease
The basal ganglia are a collection of brain areas that are connected by a variety of synaptic pathways and are a site of significant reward-related dopamine release. These properties suggest a possible role for the basal ganglia in action selection, guided by reinforcement learning. In this talk, I will discuss a framework for how this function might be performed. I will also present some recent experimental results and theory that call for a re-evaluation of certain aspects of this framework. Next, I will turn to the changes in basal ganglia activity observed to occur with the dopamine depletion associated with Parkinson’s disease. I will discuss some of the potential functional implications of some of these changes and, if time permits, will conclude with some new results that focus on delta oscillations under dopamine depletion.
Computational Neuroscience
A role for dopamine in value-free learning
Recent success in training artificial agents and robots derives from a combination of direct learning of behavioral policies and indirect learning via value functions. Policy learning and value learning employ distinct algorithms that depend upon evaluation of errors in performance and reward prediction errors, respectively. In mammals, behavioral learning and the role of mesolimbic dopamine signaling have been extensively evaluated with respect to reward prediction errors; but there has been little consideration of how direct policy learning might inform our understanding. I’ll discuss our recent work on classical conditioning in naïve mice (https://www.biorxiv.org/content/10.1101/2021.05.31.446464v1) that provides multiple lines of evidence that phasic dopamine signaling regulates policy learning from performance errors in addition to its well-known roles in value learning. This work points towards new opportunities for unraveling the mechanisms of basal ganglia control over behavior under both adaptive and maladaptive learning conditions.
Striatal Circuitry
Dopamine
Distinct limbic-hypothalamic circuits for the generation of social behaviors
The main pillars of social behaviors involve (1) mating, where males copulate with female partners to reproduce, and (2) aggression, where males fight conspecific male competitors in territory guarding. Decades of study have identified two key regions in the hypothalamus, the medial preoptic nucleus (MPN) and the ventrolateral part of ventromedial hypothalamus (VMHvl) , that are essential for male sexual and aggressive behaviors, respectively. However, it remains ambiguous what area directs excitatory control of the hypothalamic activity and generates the initiation signal for social behaviors. Through neural tracing, in vivo optical recording and functional manipulations, we identified the estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the MPN and VMHvl, and key hubs in mating and fighting circuits in males. Importantly, two spatially-distinct populations in the PA regulate male sexual and aggressive behaviors, respectively. Moreover, these two subpopulations in the PA display differential molecular phenotypes, projection patterns and in vivo neural responses. Our work also observed the parallels between these social behavior circuits and basal ganglia circuits to control motivated behaviors, which Larry Swanson (2000) originally proposed based on extensive developmental and anatomical evidence.
Basal ganglia anatomy
Computations in the basal ganglia
Deep Brain Stimulation in the Globus Pallidus internus Promotes Habitual Behavior by Modulating Cortico-Thalamic Shortcuts and Basal Ganglia Plasticity
Bernstein Conference 2024
Basal Ganglia feedback loops as possible candidates for generation of beta oscillation
COSYNE 2022
Exploration of learning by dopamine D1 and D2 receptors by a spiking network model of the basal ganglia
COSYNE 2022
Basal ganglia-dependent expression of recent song learning in the juvenile finch
COSYNE 2023
A computational model of cortico-basal ganglia circuits for deciding between reaching actions
COSYNE 2025
Integrator dynamics in the cortico-basal ganglia loop underlie flexible motor timing
COSYNE 2025
Modeling rapid neuromodulation in the cortex-basal ganglia-thalamus loop
COSYNE 2025
Unifying reward and error-driven learning: a theory of cerebello-basal ganglia interactions
COSYNE 2025
Avalanche transition matrices reflect basal ganglia-cortical alterations in Parkinson’s disease
FENS Forum 2024
Basal ganglia pathways for regulating motor skill variability
FENS Forum 2024
Tic disorders: Disruption of neuronal processing in the cortico-basal ganglia-thalamocortical motor and limbic circuits
FENS Forum 2024
Effects of progressive dopamine loss on movement cessation and initiation: Insights into basal ganglia network dynamics from a genetic model of Parkinson’s disease
FENS Forum 2024
Functional changes in the basal ganglia-thalamus-cortex loop in L-DOPA-induced dyskinesia in a mouse model of unilateral Parkinson's disease
FENS Forum 2024
Hierarchical encoding of reward, effort and choice across the frontal cortex and basal ganglia during cost-benefit decision making
FENS Forum 2024
Neural dynamics of choice behavior: Influence of prior choices on basal ganglia-anterolateral motor cortex (ALM) circuitry and optogenetic modulation of the indirect pathway
FENS Forum 2024
Neuronal activity in avian basal ganglia-cortical loop related to birdsong acoustic variation in zebra finches
FENS Forum 2024
A novel view on basal ganglia pathways: Insights from synaptic-resolution connectomics in songbirds
FENS Forum 2024
PDE5A upregulation in bipolar disorder: Insights from single-nucleus RNA sequencing of human basal ganglia
FENS Forum 2024
A REM-active basal ganglia circuit that regulates anxiety
FENS Forum 2024
Structure and interactions of glial cells and neurons in a basal ganglia connectome
FENS Forum 2024
Thalamic interaction of basal ganglia and cerebellar circuits during motor learning
FENS Forum 2024
How value representations are distributed along the primate basal ganglia circuits during decision-making?
FENS Forum 2024
Spatiotemporal segregation of parkinsonian beta oscillations in basal ganglia nuclei
Neuromatch 5