← Back

Basic Science

Topic spotlight
TopicWorld Wide

basic science

Discover seminars, jobs, and research tagged with basic science across World Wide.
5 curated items5 Seminars
Updated 12 days ago
5 items · basic science
5 results
SeminarOpen Source

Computational bio-imaging via inverse scattering

Shwetadwip Chowdhury
Assistant Professor, University of Texas at Austin
Nov 24, 2025

Optical imaging is a major research tool in the basic sciences, and is the only imaging modality that routinely enables non-ionized imaging with subcellular spatial resolutions and high imaging speeds. In biological imaging applications, however, optical imaging is limited by tissue scattering to short imaging depths. This prevents large-scale bio-imaging by allowing visualization of only the outer superficial layers of an organism, or specific components isolated from within the organism and prepared in-vitro.

SeminarPsychology

Enabling witnesses to actively explore faces and reinstate study-test pose during a lineup increases discrimination accuracy

Heather Flowe
University of Birmingham
Apr 21, 2024

In 2014, the US National Research Council called for the development of new lineup technologies to increase eyewitness identification accuracy (National Research Council, 2014). In a police lineup, a suspect is presented alongside multiple individuals known to be innocent who resemble the suspect in physical appearance know as fillers. A correct identification decision by an eyewitness can lead to a guilty suspect being convicted or an innocent suspect being exonerated from suspicion. An incorrect decision can result in the perpetrator remaining at large, or even a wrongful conviction of a mistakenly identified person. Incorrect decisions carry considerable human and financial costs, so it is essential to develop and enact lineup procedures that maximise discrimination accuracy, or the witness’ ability to distinguish guilty from innocent suspects. This talk focuses on new technology and innovation in the field of eyewitness identification. We will focus on the interactive lineup, which is a procedure that we developed based on research and theory from the basic science literature on face perception and recognition. The interactive lineup enables witnesses to actively explore and dynamically view the lineup members. The procedure has been shown to maximize discrimination accuracy, which is the witness’ ability to discriminate guilty from innocent suspects. The talk will conclude by reflecting on emerging technological frontiers and research opportunities.

SeminarNeuroscience

Epilepsy Genetics – From Family Studies to Polygenic Risk Scores

Sam Berkovic
University of Melbourne
Jan 19, 2022

Whilst epilepsy may be a consequence of an acquired insult including trauma, stroke, and brain tumours, the genetic component to epilepsies has been greatly under-estimated. Considerable progress has recently occurred in the understanding of epilepsy genetics, both at a clinical genetic level and in the basic science of epilepsies. The clinical evidence for genetic components will be first briefly discussed including data from population studies, twin analyses and multiplex family studies. Initial molecular discoveries occurred via classical methods of linkage and gene identification. Recent large-scale hypothesis-free whole exome studies searching for rare variants and genome-wide association studies detecting common variants have been very rewarding. These discoveries have now impacted on clinical practice, especially in severe childhood epilepsies but increasingly so in adult patients. The “genetic background” of patients has long been posited as part of the reason that some patients have epilepsy, or perhaps why some have more severe epilepsy. This has been unmeasurable but now, with the development of polygenic risk scores, the “background” is now in the research foreground. The current and future impact of polygenic risk scores will be explored.

SeminarNeuroscienceRecording

Applications of Multisensory Facilitation of Learning

Aaron Seitz
University of California, Riverside
Apr 14, 2021

In this talk I’ll discuss translation of findings of multisensory facilitation of learning to cognitive training. I’ll first review some early findings of multisensory facilitation of learning and then discuss how we have been translating these basic science approaches into gamified training interventions to improve cognitive functions. I’ll touch on approaches to training vision, hearing and working memory that we are developing at the UCR Brain Game Center for Mental Fitness and Well-being. I look forward to discussing both the basic science but also the complexities of how to translate approaches from basic science into the more complex frameworks often used in interventions.