Behavioural Data
behavioural data
Prof Dominik Bach
The Centre for Artificial Intelligence and Neuroscience at University of Bonn is looking to recruit a postdoctoral fellow and a PhD student to undertake high quality research and produce high-impact publications in a collaborative research project investigating the mechanisms of human aversive learning (a pre-clinical model of anxiety disorders) in a big-data approach. The project is led by Prof Dominik Bach. The goal of the advertised positions is to (a) conduct an fMRI mega-analysis of multi-voxel threat representations, using existing data from the ENIGMA consortium, and (b) adapt and improve methods to infer threat learning from psychophysiological and behavioural data in fMRI and ambulatory settings. The position involves a close collaboration with the Department for Imaging Neuroscience (FIL) at UCL Queen Square Institute of Neurology, London, UK, where part of the team is based. The role includes implementing fMRI analysis pipelines in HALFpipe, coordination with participating sites to obtain and process data, mega-analysis of threat representation geometry, implementing and developing psychophysiology and behavioural analysis pipelines using PsPM/Matlab, CogLearn/VRthreat/R, and statistical modelling (e.g. Rstan), and publication of research and development results.
Ahmed El Hady
We are seeking a PostDoc with a quantitative background who has finished (or about to finish) a doctoral degree in a quantitative field preferably but not limited to physics or engineering. The candidate should show enthusiasm for analysing large scale data sets that include but not limited to: behavioural, neural and physiological data. Experience with machine learning techniques and animal tracking software programs is preferred but not required. The researcher will be based in the integrative biophysics group at the University of Konstanz and Max Planck Institute of Animal Behavior, located in Konstanz, Germany. The Postdoc will be working as part of a recently funded Human Sciences Frontiers Program (HSFP) research grant ‘”Neurometabolic mechanisms underlying social foraging” in collaboration with the experimental groups of Robert Froemke (New York University) and Jee Hyun Choi (Korean Institute of Science and Technology). The project aims to understand neuro-metabolic mechanisms underlying social foraging. The PostDoc will have the opportunity to travel to the experimental collaborators in New York and Seoul. The Integrative Biophysics group at the CASCB led by Dr. Ahmed El Hady is focused on theoretical and computational understanding of mechanisms underlying foraging. The postdoc position will be embedded within the highly collaborative environment of the cluster for advanced study of collective behavior at the University of Konstanz.
Contentopic mapping and object dimensionality - a novel understanding on the organization of object knowledge
Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. Here I put forth a novel understanding of how object knowledge is organized in the brain, by proposing that the organization of object knowledge follows key object-related dimensions, analogously to how sensory information is organized in the brain. Moreover, I will also put forth that this knowledge is topographically laid out in the cortical surface according to these object-related dimensions that code for different types of representational content – I call this contentopic mapping. I will show a combination of fMRI and behavioral data to support these hypotheses and present a principled way to explore the multidimensionality of object processing.
Modeling the Navigational Circuitry of the Fly
Navigation requires orienting oneself relative to landmarks in the environment, evaluating relevant sensory data, remembering goals, and convert all this information into motor commands that direct locomotion. I will present models, highly constrained by connectomic, physiological and behavioral data, for how these functions are accomplished in the fly brain.
Consciousness in the cradle: on the emergence of infant experience
Although each of us was once a baby, infant consciousness remains mysterious and there is no received view about when, and in what form, consciousness first emerges. Some theorists defend a ‘late-onset’ view, suggesting that consciousness requires cognitive capacities which are unlikely to be in place before the child’s first birthday at the very earliest. Other theorists defend an ‘early-onset’ account, suggesting that consciousness is likely to be in place at birth (or shortly after) and may even arise during the third trimester. Progress in this field has been difficult, not just because of the challenges associated with procuring the relevant behavioral and neural data, but also because of uncertainty about how best to study consciousness in the absence of the capacity for verbal report or intentional behavior. This review examines both the empirical and methodological progress in this field, arguing that recent research points in favor of early-onset accounts of the emergence of consciousness.
Investigating face processing impairments in Developmental Prosopagnosia: Insights from behavioural tasks and lived experience
The defining characteristic of development prosopagnosia is severe difficulty recognising familiar faces in everyday life. Numerous studies have reported that the condition is highly heterogeneous in terms of both presentation and severity with many mixed findings in the literature. I will present behavioural data from a large face processing test battery (n = 24 DPs) as well as some early findings from a larger survey of the lived experience of individuals with DP and discuss how insights from individuals' real-world experience can help to understand and interpret lab-based data.
Decoding mental conflict between reward and curiosity in decision-making
Humans and animals are not always rational. They not only rationally exploit rewards but also explore an environment owing to their curiosity. However, the mechanism of such curiosity-driven irrational behavior is largely unknown. Here, we developed a decision-making model for a two-choice task based on the free energy principle, which is a theory integrating recognition and action selection. The model describes irrational behaviors depending on the curiosity level. We also proposed a machine learning method to decode temporal curiosity from behavioral data. By applying it to rat behavioral data, we found that the rat had negative curiosity, reflecting conservative selection sticking to more certain options and that the level of curiosity was upregulated by the expected future information obtained from an uncertain environment. Our decoding approach can be a fundamental tool for identifying the neural basis for reward–curiosity conflicts. Furthermore, it could be effective in diagnosing mental disorders.
Central place foraging: how insects anchor spatial information
Many insect species maintain a nest around which their foraging behaviour is centered, and can use path integration to maintain an accurate estimate of their distance and direction (a vector) to their nest. Some species, such as bees and ants, can also store the vector information for multiple salient locations in the world, such as food sources, in a common coordinate system. They can also use remembered views of the terrain around salient locations or along travelled routes to guide return. Recent modelling of these abilities shows convergence on a small set of algorithms and assumptions that appear sufficient to account for a wide range of behavioural data, and which can be mapped to specific insect brain circuits. Notably, this does not include any significant topological knowledge: the insect does not need to recover the information (implicit in their vector memory) about the relationships between salient places; nor to maintain any connectedness or ordering information between view memories; nor to form any associations between views and vectors. However, there remains some experimental evidence not fully explained by these algorithms that may point towards the existence of a more complex or integrated mental map in insects.
Neurocognitive mechanisms of enhanced implicit temporal processing in action video game players
Playing action video games involves both explicit (conscious) and implicit (non-conscious) expectations of timed events, such as the appearance of foes. While studies revealed that explicit attention skills are improved in action video game players (VGPs), their implicit skills remained untested. To this end, we investigated explicit and implicit temporal processing in VGPs and non-VGPs (control participants). In our variable foreperiod task, participants were immersed in a virtual reality and instructed to respond to a visual target appearing at variable delays after a cue. I will present behavioral, oculomotor and EEG data and discuss possible markers of the implicit passage of time and explicit temporal attention processing. All evidence indicates that VGPs have enhanced implicit skills to track the passage of time, which does not require conscious attention. Thus, action video game play may improve a temporal processing found altered in psychopathologies, such as schizophrenia. Could digital (game-based) interventions help remediate temporal processing deficits in psychiatric populations?
Differential working memory functioning
The integrated conflict monitoring theory of Botvinick introduced cognitive demand into conflict monitoring research. We investigated effects of individual differences of cognitive demand and another determinant of conflict monitoring entitled reinforcement sensitivity on conflict monitoring. We showed evidence of differential variability of conflict monitoring intensity using the electroencephalogram (EEG), functional magnet resonance imaging (fMRI) and behavioral data. Our data suggest that individual differences of anxiety and reasoning ability are differentially related to the recruitment of proactive and reactive cognitive control (cf. Braver). Based on previous findings, the team of the Leue-Lab investigated new psychometric data on conflict monitoring and proactive-reactive cognitive control. Moreover, data of the Leue-Lab suggest the relevance of individual differences of conflict monitoring for the context of deception. In this respect, we plan new studies highlighting individual differences of the functioning of the Anterior Cingulate Cortex (ACC). Disentangling the role of individual differences in working memory-related cognitive demand, mental effort, and reinforcement-related processes opens new insights for cognitive-motivational approaches of information processing (Passcode to rewatch: 0R8v&m59).
Developing a mouse incentive delay task
Monetary incentive delay task (MID) is a well-validated human functional MRI task widely used in probing affective-motivational processes in psychiatric disorders. We are developing a mouse version of the MID task in order to facilitate translations of findings from the wealth of human imaging studies. This talk presents our task design and behavioural data from the ongoing work.
Computational psychophysics at the intersection of theory, data and models
Behavioural measurements are often overlooked by computational neuroscientists, who prefer to focus on electrophysiological recordings or neuroimaging data. This attitude is largely due to perceived lack of depth/richness in relation to behavioural datasets. I will show how contemporary psychophysics can deliver extremely rich and highly constraining datasets that naturally interface with computational modelling. More specifically, I will demonstrate how psychophysics can be used to guide/constrain/refine computational models, and how models can be exploited to design/motivate/interpret psychophysical experiments. Examples will span a wide range of topics (from feature detection to natural scene understanding) and methodologies (from cascade models to deep learning architectures).
Choosing, fast and slow: Implications of prioritized-sampling models for understanding automaticity and control
The idea that behavior results from a dynamic interplay between automatic and controlled processing underlies much of decision science, but has also generated considerable controversy. In this talk, I will highlight behavioral and neural data showing how recently-developed computational models of decision making can be used to shed new light on whether, when, and how decisions result from distinct processes operating at different timescales. Across diverse domains ranging from altruism to risky choice biases and self-regulation, our work suggests that a model of prioritized attentional sampling and evidence accumulation may provide an alternative explanation for many phenomena previously interpreted as supporting dual process models of choice. However, I also show how some features of the model might be taken as support for specific aspects of dual-process models, providing a way to reconcile conflicting accounts and generating new predictions and insights along the way.
Delineating Reward/Avoidance Decision Process in the Impulsive-compulsive Spectrum Disorders through a Probabilistic Reversal Learning Task
Impulsivity and compulsivity are behavioural traits that underlie many aspects of decision-making and form the characteristic symptoms of Obsessive Compulsive Disorder (OCD) and Gambling Disorder (GD). The neural underpinnings of aspects of reward and avoidance learning under the expression of these traits and symptoms are only partially understood. " "The present study combined behavioural modelling and neuroimaging technique to examine brain activity associated with critical phases of reward and loss processing in OCD and GD. " "Forty-two healthy controls (HC), forty OCD and twenty-three GD participants were recruited in our study to complete a two-session reinforcement learning (RL) task featuring a “probability switch (PS)” with imaging scanning. Finally, 39 HC (20F/19M, 34 yrs +/- 9.47), 28 OCD (14F/14M, 32.11 yrs ±9.53) and 16 GD (4F/12M, 35.53yrs ± 12.20) were included with both behavioural and imaging data available. The functional imaging was conducted by using 3.0-T SIEMENS MAGNETOM Skyra syngo MR D13C at Monash Biomedical Imaging. Each volume compromised 34 coronal slices of 3 mm thickness with 2000 ms TR and 30 ms TE. A total of 479 volumes were acquired for each participant in each session in an interleaved-ascending manner. " " The standard Q-learning model was fitted to the observed behavioural data and the Bayesian model was used for the parameter estimation. Imaging analysis was conducted using SPM12 (Welcome Department of Imaging Neuroscience, London, United Kingdom) in the Matlab (R2015b) environment. The pre-processing commenced with the slice timing, realignment, normalization to MNI space according to T1-weighted image and smoothing with a 8 mm Gaussian kernel. " " The frontostriatal brain circuit including the putamen and medial orbitofrontal (mOFC) were significantly more active in response to receiving reward and avoiding punishment compared to receiving an aversive outcome and missing reward at 0.001 with FWE correction at cluster level; While the right insula showed greater activation in response to missing rewards and receiving punishment. Compared to healthy participants, GD patients showed significantly lower activation in the left superior frontal and posterior cingulum at 0.001 for the gain omission. " " The reward prediction error (PE) signal was found positively correlated with the activation at several clusters expanding across cortical and subcortical region including the striatum, cingulate, bilateral insula, thalamus and superior frontal at 0.001 with FWE correction at cluster level. The GD patients showed a trend of decreased reward PE response in the right precentral extending to left posterior cingulate compared to controls at 0.05 with FWE correction. " " The aversive PE signal was negatively correlated with brain activity in regions including bilateral thalamus, hippocampus, insula and striatum at 0.001 with FWE correction. Compared with the control group, GD group showed an increased aversive PE activation in the cluster encompassing right thalamus and right hippocampus, and also the right middle frontal extending to the right anterior cingulum at 0.005 with FWE correction. " " Through the reversal learning task, the study provided a further support of the dissociable brain circuits for distinct phases of reward and avoidance learning. Also, the OCD and GD is characterised by aberrant patterns of reward and avoidance processing.
Physics of Behavior: Now that we can track (most) everything, what can we do with the data?
We will organize the workshop around one question: “Now that we can track (most) everything, what can we do with the data?” Given the recent dramatic advances in technology, we now have behavioral data sets with orders of magnitude more accuracy, dimensionality, diversity, and size than we had even a few years ago. That being said, there is still little agreement as to what theoretical frameworks can inform our understanding of these data sets and suggest new experiments we can perform. We hope that after this workshop we’ll see a variety of new ideas and perhaps gain some inspiration. We have invited eight speakers, each studying different systems, scales, and topics, to provide 10 minute presentations focused on the above question, with another 10 minutes set aside for questions/discussions (moderated by the two of us). Although we naturally expect speakers to include aspects of their own work, we have encouraged all of them to think broadly and provocatively. We are also hoping to organize some breakout sessions after the talks so that we can have some more expanded discussions about topics arising during the meeting.