Behavioural Responses
behavioural responses
Using Fast Periodic Visual Stimulation to measure cognitive function in dementia
Fast periodic visual stimulation (FPVS) has emerged as a promising tool for assessing cognitive function in individuals with dementia. This technique leverages electroencephalography (EEG) to measure brain responses to rapidly presented visual stimuli, offering a non-invasive and objective method for evaluating a range of cognitive functions. Unlike traditional cognitive assessments, FPVS does not rely on behavioural responses, making it particularly suitable for individuals with cognitive impairment. In this talk I will highlight a series of studies that have demonstrated its ability to detect subtle deficits in recognition memory, visual processing and attention in dementia patients using EEG in the lab, at home and in clinic. The method is quick, cost-effective, and scalable, utilizing widely available EEG technology. FPVS holds significant potential as a functional biomarker for early diagnosis and monitoring of dementia, paving the way for timely interventions and improved patient outcomes.
Perceptions of responsiveness and rejection in romantic relationships. What are the implications for individuals and relationship functioning?
From birth, human beings need to be embedded into social ties to function best, because other individuals can provide us with a sense of belonging, which is a fundamental human need. One of the closest bonds we build throughout our life is with our intimate partners. When the relationship involves intimacy and when both partners accept and support each other’s needs and goals (through perceived responsiveness) individuals experience an increase in relationship satisfaction as well as physical and mental well-being. However, feeling rejected by a partner may impair the feeling of connectedness and belonging, and affect emotional and behavioural responses. When we perceive our partner to be responsive to our needs or desires, in turn we naturally strive to respond positively and adequately to our partner’s needs and desires. This implies that individuals are interdependent, and changes in one partner prompt changes in the other. Evidence suggests that partners regulate themselves and co-regulate each other in their emotional, psychological, and physiological responses. However, such processes may threaten the relationship when partners face stressful situations or interactions, like the transition to parenthood or rejection. Therefore, in this presentation, I will provide evidence for the role of perceptions of being accepted or rejected by a significant other on individual and relationship functioning, while considering the contextual settings. The three studies presented here explore romantic relationships, and how perceptions of rejection and responsiveness from the partner impact both individuals, their physiological and their emotional responses, as well as their relationship dynamics.
The brain control of appetite: Can an old dog teach us new tricks?
It is clear that the cause of obesity is a result of eating more than you burn. It is physics. What is more complex to answer is why some people eat more than others? Differences in our genetic make-up mean some of us are slightly more hungry all the time and so eat more than others. We now know that the genetics of body-weight, on which obesity sits on one end of the spectrum, is in actuality the genetics of appetite control. In contrast to the prevailing view, body-weight is not a choice. People who are obese are not bad or lazy; rather, they are fighting their biology.
Fish Feelings: Emotional states in larval zebrafish
I’ll give an overview of internal - or motivational - states in larval zebrafish. Specifically we will focus on the role of the Oxytocin system in regulating the detection of, and behavioral responses to, conspecifics. The appeal here is that Oxytocin has likely conserved roles across all vertebrates, including humans, and that the larval zebrafish allows us to study some of the general principles across the brain but nonetheless at cellular resolution. This allows us to propose mechanistic models of emotional states.
Functional and structural loci of individuality in the Drosophila olfactory circuit
behaviour varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioural individuality, because while the neural circuit underlying olfactory behaviour is well-described and highly stereotyped, persistent idiosyncrasy in behaviour, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioural responses remains unknown. Here, using paired behaviour and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behaviour and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behaviour. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behaviour among individuals.
Algorithms and circuits for olfactory navigation in walking Drosophila
Olfactory navigation provides a tractable model for studying the circuit basis of sensori-motor transformations and goal-directed behaviour. Macroscopic organisms typically navigate in odor plumes that provide a noisy and uncertain signal about the location of an odor source. Work in many species has suggested that animals accomplish this task by combining temporal processing of dynamic odor information with an estimate of wind direction. Our lab has been using adult walking Drosophila to understand both the computational algorithms and the neural circuits that support navigation in a plume of attractive food odor. We developed a high-throughput paradigm to study behavioural responses to temporally-controlled odor and wind stimuli. Using this paradigm we found that flies respond to a food odor (apple cider vinegar) with two behaviours: during the odor they run upwind, while after odor loss they perform a local search. A simple computational model based one these two responses is sufficient to replicate many aspects of fly behaviour in a natural turbulent plume. In on-going work, we are seeking to identify the neural circuits and biophysical mechanisms that perform the computations delineated by our model. Using electrophysiology, we have identified mechanosensory neurons that compute wind direction from movements of the two antennae and central mechanosensory neurons that encode wind direction are are involved in generating a stable downwind orientation. Using optogenetic activation, we have traced olfactory circuits capable of evoking upwind orientation and offset search from the periphery, through the mushroom body and lateral horn, to the central complex. Finally, we have used optogenetic activation, in combination with molecular manipulation of specific synapses, to localize temporal computations performed on the odor signal to olfactory transduction and transmission at specific synapses. Our work illustrates how the tools available in fruit fly can be applied to dissect the mechanisms underlying a complex goal-directed behaviour.
New data in an animal model for schizophrenia: Ketamine-induced locomotor activity and repetitive behavioural responses are higher after neonatal functional blockade of the prefrontal cortex
FENS Forum 2024
Prediction errors elicit faster and more accurate behavioural responses
FENS Forum 2024
Temperature-driven neural and behavioural responses in Hydra vulgaris
FENS Forum 2024