Behavioural Strategies
behavioural strategies
Thomas Nowotny
You will develop novel active AI algorithms that are inspired by the rapid and robust learning of insects within the £1.2m EPSRC International Centre to Centre Collaboration project: “ActiveAI: active learning and selective attention for rapid, robust and efficient AI.” and will work in collaboration with the University of Sheffield and world-leading neuroscientists in Australia. Your primary role will be to develop a new class of ActiveAI controllers for problems in which insects excel but deep learning methods struggle. These problems have one or more of the following characteristics: (i) learning must occur rapidly, (ii) learning samples are few or costly, (iii) computational resources are limited, and (iv) the learning problem changes over time. Insects deal with such complex tasks robustly despite limited computational power because learning is an active process emerging from the interaction of evolved brains, bodies and behaviours. Through a virtuous cycle of modelling and experiments, you will develop insect-inspired models, in which behavioural strategies and specialised sensors actively structure sensory input while selective attention drives learning to the most salient information. The cycle of modelling and experiments will be achieved through field work in both Sussex and Australia.
Dr Silvia Maggi, Professor Mark Humphries, Dr Hazem Toutonji
A fully-funded PhD is available with Dr Silvia Maggi and Professor Mark Humphries (University of Nottingham) and Dr Hazem Toutonji (University of Sheffield). The project involves understanding how subjects respond to dynamic environments and requires approaches that can track subject's choice strategies at the resolution of single trials. The team recently developed a Bayesian inference algorithm that enables trial-resolution tracking of learning and exploration during learning. This project will build on this work to solve crucial problems of determining which of a set of behavioural strategies a subject is using and how to incorporate evidence uncertainty into its detection of the learning of strategies and transitions between them. Using the extended algorithm on datasets of rodents and humans performing decision tasks will let us test a range of hypotheses for how correct decisions are learnt and what innate strategies are used.
Dr Silvia Maggi, Professor Mark Humphries, Dr Hazem Toutonji
A fully-funded PhD is available with Dr Silvia Maggi and Professor Mark Humphries (University of Nottingham) and Dr Hazem Toutonji (University of Sheffield). The project involves understanding how subjects respond to dynamic environments and requires approaches that can track subject's choice strategies at the resolution of single trials. The project will build on a recently developed Bayesian inference algorithm that enables trial-resolution tracking of learning and exploration during learning. The project aims to solve crucial problems of determining which of a set of behavioural strategies a subject is using and how to incorporate evidence uncertainty into its detection of the learning of strategies and transitions between them. Using the extended algorithm on datasets of rodents and humans performing decision tasks will let us test a range of hypotheses for how correct decisions are learnt and what innate strategies are used.
Silvia Maggi, Mark Humphries, Hazem Toutonji
A fully-funded PhD is immediately available with Dr Silvia Maggi and Professor Mark Humphries (University of Nottingham) and Dr Hazem Toutonji (University of Sheffield). The project will build on recently published work involving a Bayesian inference algorithm that enables trial-resolution tracking of learning and exploration during decision-making. The PhD project aims to solve crucial problems of determining which of a set of behavioural strategies a subject is using and how to incorporate evidence uncertainty into its detection of the learning of strategies and transitions between them. Using the extended algorithm on datasets of rodents and humans performing decision tasks will allow testing a range of hypotheses for how correct decisions are learnt and what innate strategies are used.
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Mice alternate between discrete strategies during perceptual decision-making
Classical models of perceptual decision-making assume that animals use a single, consistent strategy to integrate sensory evidence and form decisions during an experiment. In this talk, I aim to convince you that this common view is incorrect. I will show results from applying a latent variable framework, the “GLM-HMM”, to hundreds of thousands of trials of mouse choice data. Our analysis reveals that mice don’t lapse. Instead, mice switch back and forth between engaged and disengaged behavior within a single session, and each mode of behavior lasts tens to hundreds of trials.
Orbitofrontal cortical contributions to behavioural strategies during tactile reversal learning
FENS Forum 2024