Bioimaging
bioimaging
Scaling Up Bioimaging with Microfluidic Chips
Explore how microfluidic chips can enhance your imaging experiments by increasing control, throughput, or flexibility. In this remote, personalized workshop, participants will receive expert guidance, support and chips to run tests on their own microscopes.
“A Focus on 3D Printed Lenses: Rapid prototyping, low-cost microscopy and enhanced imaging for the life sciences”
High-quality glass lenses are commonplace in the design of optical instrumentation used across the biosciences. However, research-grade glass lenses are often costly, delicate and, depending on the prescription, can involve intricate and lengthy manufacturing - even more so in bioimaging applications. This seminar will outline 3D printing as a viable low-cost alternative for the manufacture of high-performance optical elements, where I will also discuss the creation of the world’s first fully 3D printed microscope and other implementations of 3D printed lenses. Our 3D printed lenses were generated using consumer-grade 3D printers and pose a 225x materials cost-saving compared to glass optics. Moreover, they can be produced in any lab or home environment and offer great potential for education and outreach. Following performance validation, our 3D printed optics were implemented in the production of a fully 3D printed microscope and demonstrated in histological imaging applications. We also applied low-cost fabrication methods to exotic lens geometries to enhance resolution and contrast across spatial scales and reveal new biological structures. Across these applications, our findings showed that 3D printed lenses are a viable substitute for commercial glass lenses, with the advantage of being relatively low-cost, accessible, and suitable for use in optical instruments. Combining 3D printed lenses with open-source 3D printed microscope chassis designs opens the doors for low-cost applications for rapid prototyping, low-resource field diagnostics, and the creation of cheap educational tools.
Sometimes more is not better: The case of medical imaging
En el diagnóstico médico por imágenes muchas veces los desarrollos técnicos se han concentrado en mejorar la calidad de las imágenes en términos de resolución espacial y/o temporal, lo cual muchas veces ha incrementado considerablemente los costos de estas prestaciones. Sin embargo, mejor resolución espacial y/o temporal de las imágenes médicas, no se traducen necesariamente en mejores diagnósticos o en diagnósticos más tempranos, y en algunos casos, nuevas capacidades diagnósticas no han demostrado un impacto en reducir la mortalidad asociada a las patologías. En esta presentación discutiremos como el impacto de las nuevas tecnologías en salud debe ser medido en términos del resultado clínico del paciente o la población afectada más que en parámetros asociados a la "calidad" de las imágenes.
Introducing YAPiC: An Open Source tool for biologists to perform complex image segmentation with deep learning
Robust detection of biological structures such as neuronal dendrites in brightfield micrographs, tumor tissue in histological slides, or pathological brain regions in MRI scans is a fundamental task in bio-image analysis. Detection of those structures requests complex decision making which is often impossible with current image analysis software, and therefore typically executed by humans in a tedious and time-consuming manual procedure. Supervised pixel classification based on Deep Convolutional Neural Networks (DNNs) is currently emerging as the most promising technique to solve such complex region detection tasks. Here, a self-learning artificial neural network is trained with a small set of manually annotated images to eventually identify the trained structures from large image data sets in a fully automated way. While supervised pixel classification based on faster machine learning algorithms like Random Forests are nowadays part of the standard toolbox of bio-image analysts (e.g. Ilastik), the currently emerging tools based on deep learning are still rarely used. There is also not much experience in the community how much training data has to be collected, to obtain a reasonable prediction result with deep learning based approaches. Our software YAPiC (Yet Another Pixel Classifier) provides an easy-to-use Python- and command line interface and is purely designed for intuitive pixel classification of multidimensional images with DNNs. With the aim to integrate well in the current open source ecosystem, YAPiC utilizes the Ilastik user interface in combination with a high performance GPU server for model training and prediction. Numerous research groups at our institute have already successfully applied YAPiC for a variety of tasks. From our experience, a surprisingly low amount of sparse label data is needed to train a sufficiently working classifier for typical bioimaging applications. Not least because of this, YAPiC has become the "standard weapon” for our core facility to detect objects in hard-to-segement images. We would like to present some use cases like cell classification in high content screening, tissue detection in histological slides, quantification of neural outgrowth in phase contrast time series, or actin filament detection in transmission electron microscopy.