Blood Glucose
blood glucose
PhenoSign - Molecular Dynamic Insights
Do You Know Your Blood Glucose Level? You Probably Should! A single measurement is not enough to truly understand your metabolic health. Blood glucose levels fluctuate dynamically, and meaningful insights require continuous monitoring over time. But glucose is just one example. Many other molecular concentrations in the body are not static. Their variations are influenced by individual physiology and overall health. PhenoSign, a Swiss MedTech startup, is on a mission to become the leader in real-time molecular analysis of complex fluids, supporting clinical decision-making and life sciences applications. By providing real-time, in-situ molecular insights, we aim to advance medicine and transform life sciences research. This talk will provide an overview of PhenoSign’s journey since its inception in 2022—our achievements, challenges, and the strategic roadmap we are executing to shape the future of real-time molecular diagnostics.
A metabolic function of the hippocampal sharp wave-ripple
The hippocampal formation has been implicated in both cognitive functions as well as the sensing and control of endocrine states. To identify a candidate activity pattern which may link such disparate functions, we simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats. We found that clusters of sharp wave-ripples (SPW-Rs) recorded from both dorsal and ventral hippocampus reliably predicted a decrease in peripheral glucose concentrations within ~10 minutes. This correlation was less dependent on circadian, ultradian, and meal-triggered fluctuations, it could be mimicked with optogenetically induced ripples, and was attenuated by pharmacogenetically suppressing activity of the lateral septum, the major conduit between the hippocampus and subcortical structures. Our findings demonstrate that a novel function of the SPW-R is to modulate peripheral glucose homeostasis and offer a mechanism for the link between sleep disruption and blood glucose dysregulation seen in type 2 diabetes and obesity.