← Back

Brain Dynamics

Topic spotlight
TopicWorld Wide

brain dynamics

Discover seminars, jobs, and research tagged with brain dynamics across World Wide.
38 curated items24 Seminars9 ePosters5 Positions
Updated in 5 days
38 items · brain dynamics
38 results
SeminarNeuroscience

Consciousness at the edge of chaos

Martin Monti
University of California Los Angeles
Dec 11, 2025

Over the last 20 years, neuroimaging and electrophysiology techniques have become central to understanding the mechanisms that accompany loss and recovery of consciousness. Much of this research is performed in the context of healthy individuals with neurotypical brain dynamics. Yet, a true understanding of how consciousness emerges from the joint action of neurons has to account for how severely pathological brains, often showing phenotypes typical of unconsciousness, can nonetheless generate a subjective viewpoint. In this presentation, I will start from the context of Disorders of Consciousness and will discuss recent work aimed at finding generalizable signatures of consciousness that are reliable across a spectrum of brain electrophysiological phenotypes focusing in particular on the notion of edge-of-chaos criticality.

Position

Ing. Mgr. Jaroslav Hlinka, Ph.D.

Institute of Computer Science of the Czech Academy of Sciences
Prague, Czech Republic
Dec 5, 2025

Research Fellow / Postdoc positions in Complex Networks and Brain Dynamics We are looking for new team members to join the Complex Networks and Brain Dynamics group to work on its interdisciplinary projects. The group is part of the Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences - based in Prague, Czech Republic, https://www.cs.cas.cz/. We focus on the development and application of methods of analysis and modelling of real-world complex networked systems, with particular interest in the structure and dynamics of human brain function. Our main research areas are neuroimaging data analysis (fMRI & EEG, iEEG, anatomical and diffusion MRI), brain dynamics modelling, causality and information flow inference, nonlinearity and nonstationarity, graph theory, machine learning and multivariate statistics; with applications in neuroscience, climate research, economics and general communication networks. More information about the group at http://cobra.cs.cas.cz/. Conditions: • Contract is for 6-24 months duration. • Positions are available immediately or upon agreement. • Applications will be reviewed on a rolling basis with a first cut-off point on 30. 09. 2022, until the positions are filled. • This is a full-time fixed term contract appointment. Part time contract negotiable. • Monthly gross salary: 42 000 – 55 000 CZK based on qualifications and experience. Cost Of Living Comparison • Bonuses and travel funding for conferences and research stays depending on performance. • No teaching duties.

Position

Ing. Mgr. Jaroslav Hlinka, Ph.D.

INSTITUTE OF COMPUTER SCIENCE of the Czech Academy of Sciences
Prague, Czech Republic
Dec 5, 2025

We are looking for new team members to join the Complex Networks and Brain Dynamics group to work on its interdisciplinary projects. The group is part of the Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences - based in Prague, Czech Republic, https://www.cs.cas.cz/en. The position details are at https://www.cs.cas.cz/job-offer/research-fellow-postdoc-position-Hlinka1-2022/en. We focus on the development and application of methods of analysis and modelling of real-world complex networked systems, with particular interest in the structure and dynamics of human brain function. Our main research areas are neuroimaging data analysis (fMRI & EEG, iEEG, anatomical and diffusion MRI), brain dynamics modelling, causality and information flow inference, nonlinearity and nonstationarity, graph theory, machine learning and multivariate statistics; with applications in neuroscience, climate research, economics and general communication networks. More information about the group at http://cobra.cs.cas.cz/. Conditions: • Contract is for 6-24 months duration. • Positions are available immediately or upon agreement. • Applications will be reviewed on a rolling basis with a first cut-off point on 30. 06. 2022, until the positions are filled. • This is a full-time fixed term contract appointment. Part time contract negotiable. • Monthly gross salary: 39000 - 55000 CZK based on qualifications and experience. Cost Of Living Comparison: https://www.numbeo.com/cost-of-living/comparison.jsp • Bonuses and travel funding for conferences and research stays depending on performance. • No teaching duties

Position

Ing. Mgr. Jaroslav Hlinka, Ph.D.

INSTITUTE OF COMPUTER SCIENCE of the Czech Academy of Sciences
Prague, Czech Republic
Dec 5, 2025

A postdoc or junior scientist position is available to join the Complex Networks and Brain Dynamics group for the project: “Predicting functional outcome in schizophrenia from multimodal neuroimaging and clinical data“ funded by the Czech Health Research Council. For more info see: https://www.cs.cas.cz/job-offer/postdoctoral-junior-scientist-position-Hlinka2-2022/en The project involves the development of tools to predict the functional outcome of schizophrenia from multimodal neuroimaging, clinical and cognitive measurements taken early after disease onset. To overcome limitations due to high dimensionality of data, we combine robust machine-learning tools, data-driven feature selection and theory-based brain network priors. The project is carried out in collaboration with the National Institute of Mental Health, using its unique large rich imaging, cognitive and biochemical data of early stage schizophrenia patients. Conditions: • Contract is of 12-30 months duration (with possibility of a follow-up tenure-track application). • Starting date: position is available immediately • Applications will be reviewed on a rolling basis with a first cut-off point on 30.6.2022 • This is a full-time fixed term contract appointment. Part time contract negotiable. • Monthly gross salary: 40000 - 47000 CZK based on qualifications and experience. • Bonuses depending on performance and travel funding for conferences and research stays. • Contribution for reallocation costs for succesful applicant coming from abroad: 10 000 CZK plus 10 000 CZK for family (spouse and/or children). • No teaching duties

Position

Arvind Kumar

KTH Royal Institute of Technology
Stockholm, Sweden
Dec 5, 2025

Postdoctoral researcher positions are available in computational neuroscience. The projects will entail modelling of biological neural networks, either reduced rate-models or data-driven biophysical models or analysis of neural data. Each selected candidate will work in close collaboration with other PIs in the dBrain consortium. dBRAIN is an interdisciplinary initiative to better understand neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. We combine computational modeling, machine learning and topological data analysis to identify causal links among disease biomarkers and disease symptoms. This understanding should improve diagnosis, prediction of the disease progression and suggest better therapies. There are 3 positions available and the selected candidates with work with Arvind Kumar [https://www.kth.se/profile/arvindku?l=en] Jeanette Hellgren Kotaleski [https://www.kth.se/profile/jeanette?l=en] Erik Fransen [https://www.kth.se/profile/erikf?l=en] Apply: https://www.kth.se/en/om/work-at-kth/lediga-jobb/what:job/jobID:390546/where:4/

PositionComputational Neuroscience

Jaroslav Hlinka

Institute of Computer Science, Czech Academy of Sciences
Prague, Czech Republic
Dec 5, 2025

Several postdoctoral positions are available in the Complex Networks and Brain Dynamics group (COBRA) at the Institute of Computer Science, Prague (Czech Republic). These positions are part of a larger, interdisciplinary consortium project that has recently been awarded (OPJAK BRADY). The project topics include: Topic 1: Detailed biophysical modelling of neurotransmitter action (supervised by Pavel Sanda). Topic 2: Computationally efficient mean-field models of cortical microcircuits (supervised by Helmut Schmidt). Topic 3: Whole-brain dynamics with applications particularly to schizophrenia and Parkinson's disease (supervised by Gustavo Deco). Topic 4: Data-driven model inversion and personalized parameter identification (supervised by Nikola Jajcay). Topic 5: Modelling interventions into arousal dynamics (supervised by Jaroslav Hlinka). Other related topics may be considered based on their fit to the overall project.

SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 12, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions

Marija Markicevic
Yale
Jan 17, 2024

Understanding how macroscale brain dynamics are shaped by microscale mechanisms is crucial in neuroscience. We investigate this relationship in animal models by directly manipulating cellular properties and measuring whole-brain responses using resting-state fMRI. Specifically, we explore the impact of chemogenetically neuromodulating D1 medium spiny neurons in the dorsomedial caudate putamen (CPdm) on BOLD dynamics within a striato-thalamo-cortical circuit in mice. Our findings indicate that CPdm neuromodulation alters BOLD dynamics in thalamic subregions projecting to the dorsomedial striatum, influencing both local and inter-regional connectivity in cortical areas. This study contributes to understanding structure–function relationships in shaping inter-regional communication between subcortical and cortical levels.

SeminarNeuroscience

Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer

Junbeom Kwon
Nov 20, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916

SeminarNeuroscience

Brain Connectivity Workshop

Ed Bullmore, Jianfeng Feng, Viktor Jirsa, Helen Mayberg, Pedro Valdes-Sosa
Sep 19, 2023

Founded in 2002, the Brain Connectivity Workshop (BCW) is an annual international meeting for in-depth discussions of all aspects of brain connectivity research. By bringing together experts in computational neuroscience, neuroscience methodology and experimental neuroscience, it aims to improve the understanding of the relationship between anatomical connectivity, brain dynamics and cognitive function. These workshops have a unique format, featuring only short presentations followed by intense discussion. This year’s workshop is co-organised by Wellcome, putting the spotlight on brain connectivity in mental health disorders. We look forward to having you join us for this exciting, thought-provoking and inclusive event.

SeminarNeuroscienceRecording

Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing

Pulin Gong
The University of Sydney
Aug 10, 2023

The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.

SeminarNeuroscience

Quasicriticality and the quest for a framework of neuronal dynamics

Leandro Jonathan Fosque
Beggs lab, IU Bloomington
May 2, 2023

Critical phenomena abound in nature, from forest fires and earthquakes to avalanches in sand and neuronal activity. Since the 2003 publication by Beggs & Plenz on neuronal avalanches, a growing body of work suggests that the brain homeostatically regulates itself to operate near a critical point where information processing is optimal. At this critical point, incoming activity is neither amplified (supercritical) nor damped (subcritical), but approximately preserved as it passes through neural networks. Departures from the critical point have been associated with conditions of poor neurological health like epilepsy, Alzheimer's disease, and depression. One complication that arises from this picture is that the critical point assumes no external input. But, biological neural networks are constantly bombarded by external input. How is then the brain able to homeostatically adapt near the critical point? We’ll see that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality while maintaining optimal properties for information transmission. We’ll see that simulations and experimental data confirm these predictions and describe new ones that could be tested soon. More importantly, we will see how this organizing principle could help in the search for biomarkers that could soon be tested in clinical studies.

SeminarNeuroscienceRecording

Estimating repetitive spatiotemporal patterns from resting-state brain activity data

Yusuke Takeda
Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Japan
Apr 27, 2023

Repetitive spatiotemporal patterns in resting-state brain activities have been widely observed in various species and regions, such as rat and cat visual cortices. Since they resemble the preceding brain activities during tasks, they are assumed to reflect past experiences embedded in neuronal circuits. Moreover, spatiotemporal patterns involving whole-brain activities may also reflect a process that integrates information distributed over the entire brain, such as motor and visual information. Therefore, revealing such patterns may elucidate how the information is integrated to generate consciousness. In this talk, I will introduce our proposed method to estimate repetitive spatiotemporal patterns from resting-state brain activity data and show the spatiotemporal patterns estimated from human resting-state magnetoencephalography (MEG) and electroencephalography (EEG) data. Our analyses suggest that the patterns involved whole-brain propagating activities that reflected a process to integrate the information distributed over frequencies and networks. I will also introduce our current attempt to reveal signal flows and their roles in the spatiotemporal patterns using a big dataset. - Takeda et al., Estimating repetitive spatiotemporal patterns from resting-state brain activity data. NeuroImage (2016); 133:251-65. - Takeda et al., Whole-brain propagating patterns in human resting-state brain activities. NeuroImage (2021); 245:118711.

SeminarNeuroscienceRecording

Off the rails - how pathological patterns of whole brain activity emerge in epileptic seizures

Richard Rosch
King's College London
Mar 14, 2023

In most brains across the animal kingdom, brain dynamics can enter pathological states that are recognisable as epileptic seizures. Yet usually, brain operate within certain constraints given through neuronal function and synaptic coupling, that will prevent epileptic seizure dynamics from emerging. In this talk, I will bring together different approaches to identifying how networks in the broadest sense shape brain dynamics. Using illustrative examples from intracranial EEG recordings, disorders characterised by molecular disruption of a single neurotransmitter receptor type, to single-cell recordings of whole-brain activity in the larval zebrafish, I will address three key questions - (1) how does the regionally specific composition of synaptic receptors shape ongoing physiological brain activity; (2) how can disruption of this regionally specific balance result in abnormal brain dynamics; and (3) which cellular patterns underly the transition into an epileptic seizure.

SeminarNeuroscienceRecording

Bridging the gap between artificial models and cortical circuits

C. B. Currin
IST Austria
Nov 9, 2022

Artificial neural networks simplify complex biological circuits into tractable models for computational exploration and experimentation. However, the simplification of artificial models also undermines their applicability to real brain dynamics. Typical efforts to address this mismatch add complexity to increasingly unwieldy models. Here, we take a different approach; by reducing the complexity of a biological cortical culture, we aim to distil the essential factors of neuronal dynamics and plasticity. We leverage recent advances in growing neurons from human induced pluripotent stem cells (hiPSCs) to analyse ex vivo cortical cultures with only two distinct excitatory and inhibitory neuron populations. Over 6 weeks of development, we record from thousands of neurons using high-density microelectrode arrays (HD-MEAs) that allow access to individual neurons and the broader population dynamics. We compare these dynamics to two-population artificial networks of single-compartment neurons with random sparse connections and show that they produce similar dynamics. Specifically, our model captures the firing and bursting statistics of the cultures. Moreover, tightly integrating models and cultures allows us to evaluate the impact of changing architectures over weeks of development, with and without external stimuli. Broadly, the use of simplified cortical cultures enables us to use the repertoire of theoretical neuroscience techniques established over the past decades on artificial network models. Our approach of deriving neural networks from human cells also allows us, for the first time, to directly compare neural dynamics of disease and control. We found that cultures e.g. from epilepsy patients tended to have increasingly more avalanches of synchronous activity over weeks of development, in contrast to the control cultures. Next, we will test possible interventions, in silico and in vitro, in a drive for personalised approaches to medical care. This work starts bridging an important theoretical-experimental neuroscience gap for advancing our understanding of mammalian neuron dynamics.

SeminarNeuroscienceRecording

Hidden nature of seizures

Premysl Jiruska
Charles University, Prague
Oct 4, 2022

How seizures emerge from the abnormal dynamics of neural networks within the epileptogenic tissue remains an enigma. Are seizures random events, or do detectable changes in brain dynamics precede them? Are mechanisms of seizure emergence identical at the onset and later stages of epilepsy? Is the risk of seizure occurrence stable, or does it change over time? A myriad of questions about seizure genesis remains to be answered to understand the core principles governing seizure genesis. The last decade has brought unprecedented insights into the complex nature of seizure emergence. It is now believed that seizure onset represents the product of the interactions between the process of a transition to seizure, long-term fluctuations in seizure susceptibility, epileptogenesis, and disease progression. During the lecture, we will review the latest observations about mechanisms of ictogenesis operating at multiple temporal scales. We will show how the latest observations contribute to the formation of a comprehensive theory of seizure genesis, and challenge the traditional perspectives on ictogenesis. Finally, we will discuss how combining conventional approaches with computational modeling, modern techniques of in vivo imaging, and genetic manipulation open prospects for exploration of yet hidden mechanisms of seizure genesis.

SeminarNeuroscience

Setting network states via the dynamics of action potential generation

Susanne Schreiber
Humboldt University Berlin, Germany
Oct 4, 2022

To understand neural computation and the dynamics in the brain, we usually focus on the connectivity among neurons. In contrast, the properties of single neurons are often thought to be negligible, at least as far as the activity of networks is concerned. In this talk, I will contradict this notion and demonstrate how the biophysics of action-potential generation can have a decisive impact on network behaviour. Our recent theoretical work shows that, among regularly firing neurons, the somewhat unattended homoclinic type (characterized by a spike onset via a saddle homoclinic orbit bifurcation) particularly stands out: First, spikes of this type foster specific network states - synchronization in inhibitory and splayed-out/frustrated states in excitatory networks. Second, homoclinic spikes can easily be induced by changes in a variety of physiological parameters (like temperature, extracellular potassium, or dendritic morphology). As a consequence, such parameter changes can even induce switches in network states, solely based on a modification of cellular voltage dynamics. I will provide first experimental evidence and discuss functional consequences of homoclinic spikes for the design of efficient pattern-generating motor circuits in insects as well as for mammalian pathologies like febrile seizures. Our analysis predicts an interesting role for homoclinic action potentials as an integral part of brain dynamics in both health and disease.

SeminarNeuroscienceRecording

Brain dynamics and flexible behaviors

Lucina Uddin
Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
Mar 15, 2022

Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, large-scale functional brain networks. The right insular cortex is a critical component of a salience/midcingulo-insular network that is thought to mediate interactions between brain networks involved in externally oriented (central executive/lateral frontoparietal network) and internally oriented (default mode/medial frontoparietal network) processes. How these brain systems reconfigure with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta-analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.

SeminarNeuroscience

The Turbulent Brain: A New Framework to Capture Whole-Brain Dynamics

Gustavo Deco
Universitat Pompeu Fabra, Barcelona
Jan 26, 2022
SeminarNeuroscience

Brain dynamics related to short-term memory and learning

Fritjof Helmchen
Brain Research Institute, Zurich
Jun 13, 2021
SeminarNeuroscience

Advances in Computational Psychiatry: Understanding (cognitive) control as a network process

Danielle S. Bassett
University of Pennsylvania, & Santa Fe Institute
Jun 9, 2021

The human brain is a complex organ characterized by heterogeneous patterns of interconnections. Non-invasive imaging techniques now allow for these patterns to be carefully and comprehensively mapped in individual humans, paving the way for a better understanding of how wiring supports cognitive processes. While a large body of work now focuses on descriptive statistics to characterize these wiring patterns, a critical open question lies in how the organization of these networks constrains the potential repertoire of brain dynamics. In this talk, I will describe an approach for understanding how perturbations to brain dynamics propagate through complex wiring patterns, driving the brain into new states of activity. Drawing on a range of disciplinary tools – from graph theory to network control theory and optimization – I will identify control points in brain networks and characterize trajectories of brain activity states following perturbation to those points. Finally, I will describe how these computational tools and approaches can be used to better understand the brain's intrinsic control mechanisms and their alterations in psychiatric conditions.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Kenneth Harris, György Buzsáki, Terrence Sejnowski
May 12, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Carl Petersen, Bruce McNaughton, Sonja Grün
May 11, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Jennifer Li and Drew Robson, Thomas Mrsic-Flogel, David McCormick
May 10, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscienceRecording

Brain dynamics underlying memory for continuous natural events

Janice Chen
Johns Hopkins
Aug 20, 2020

The world confronts our senses with a continuous stream of rapidly changing information. Yet, we experience life as a series of episodes or events, and in memory these pieces seem to become even further organized. How do we recall and give structure to this complex information? Recent studies have begun to examine these questions using naturalistic stimuli and behavior: subjects view audiovisual movies and then freely recount aloud their memories of the events. We find brain activity patterns that are unique to individual episodes, and which reappear during verbal recollection; robust generalization of these patterns across people; and memory effects driven by the structure of links between events in a narrative. These findings construct a picture of how we comprehend and recall real-world events that unfold continuously across time.

ePoster

Controlled sampling of non-equilibrium brain dynamics: modeling and estimation from neuroimaging signals

Matthieu Gilson

Bernstein Conference 2024

ePoster

Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes

Thanos Manos, Sandra Diaz-Pier, Igor Fortel, Ira Driscoll, Liang Zhan, Alex Leow

Bernstein Conference 2024

ePoster

Brain dynamics and spatiotemporal trajectories during threat processing

Joyneel Misra, Luiz Pessoa

COSYNE 2025

ePoster

Sensory stimulation boosts brain dynamics fluidity and memory performance in Alzheimer’s disease mice

Demian Battaglia, Matthieu Aguilera, Samy Castro, Jyotika Bahuguna, Laura Harsan, Chantal Mathis, Romain Goutagny

COSYNE 2025

ePoster

Beyond individuals: Comparing spontaneous whole-brain dynamics across zebrafish larvae

Mattéo Dommanget-Kott, Jorge Fernandez-de-Cossio-Diaz, Georges Debrégeas, Volker Bormuth

FENS Forum 2024

ePoster

DivfreqBERT: Encoding distinct frequency ranges of brain dynamics based on the complexity of the brain

Sangyoon Bae, Junbeom Kwon, Jiook Cha, Shinjae Yoo

FENS Forum 2024

ePoster

Emotions modulation on interbrain dynamics

Federica Antonelli, Fabrizio Bernardi, Francesca Managò, Francesco Papaleo

FENS Forum 2024

ePoster

40 Hz gamma visual stimulation restores brain dynamics and boosts memory in a new mouse model of early Alzheimer’s disease

Matthieu Aguilera, Chantal Mathis, Demian Battaglia, Romain Goutagny

FENS Forum 2024

ePoster

Inhibitory brain dynamics for adaptive behaviour: The role of GABAergic neurotransmission in orientation discrimination-based visual perceptual learning

Matthew Bailey, Olivia Stupart, Clara Velazquez-Sanchez, Livia Wilod Versprille, Harry Robson, Johann du Hoffmann, Zoe Kourtzi, Jeffrey Dalley

FENS Forum 2024