Brain
brain fingerprints
The quest for brain identification
In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.
“Mind reading” with brain scanners: Facts versus science fiction
Every thought is associated with a unique pattern of brain activity. Thus, in principle, it should be possible to use these activity patterns as "brain fingerprints" for different thoughts and to read out what a person is thinking based on their brain activity alone. Indeed, using machine learning considerable progress has been made in such "brainreading" in recent years. It is now possible to decode which image a person is viewing, which film sequence they are watching, which emotional state they are in or which intentions they hold in mind. This talk will provide an overview of the current state of the art in brain reading. It will also highlight the main challenges and limitations of this research field. For example, mathematical models are needed to cope with the high dimensionality of potential mental states. Furthermore, the ethical concerns raised by (often premature) commercial applications of brain reading will also be discussed.