← Back

Brain Injury

Topic spotlight
TopicWorld Wide

brain injury

Discover seminars, jobs, and research tagged with brain injury across World Wide.
46 curated items28 ePosters18 Seminars
Updated about 1 month ago
46 items · brain injury
46 results
SeminarNeuroscience

MRI investigation of orientation-dependent changes in microstructure and function in a mouse model of mild traumatic brain injury

Amr Eed
Western University
Nov 5, 2025
SeminarNeuroscience

Traumatic brain injury and the visual sequela

Daniella Rutner
SUNY
Nov 25, 2024
SeminarNeuroscience

Metabolic-functional coupling of parvalbmunin-positive GABAergic interneurons in the injured and epileptic brain

Chris Dulla
Tufts
Jun 18, 2024

Parvalbumin-positive GABAergic interneurons (PV-INs) provide inhibitory control of excitatory neuron activity, coordinate circuit function, and regulate behavior and cognition. PV-INs are uniquely susceptible to loss and dysfunction in traumatic brain injury (TBI) and epilepsy but the cause of this susceptibility is unknown. One hypothesis is that PV-INs use specialized metabolic systems to support their high-frequency action potential firing and that metabolic stress disrupts these systems, leading to their dysfunction and loss. Metabolism-based therapies can restore PV-IN function after injury in preclinical TBI models. Based on these findings, we hypothesize that (1) PV-INs are highly metabolically specialized, (2) these specializations are lost after TBI, and (3) restoring PV-IN metabolic specializations can improve PV-IN function as well as TBI-related outcomes. Using novel single-cell approaches, we can now quantify cell-type-specific metabolism in complex tissues to determine whether PV-IN metabolic dysfunction contributes to the pathophysiology of TBI.

SeminarNeuroscience

Reconstructing inhibitory circuits in a damaged brain

Robert Hunt
University of California-Irvine
May 17, 2022

Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.

SeminarNeuroscienceRecording

Post-traumatic headache

David Dodick
Department of Neurology, Mayo Clinic, Scottsdale Arizona, USA
Feb 23, 2022

Concussion (mild traumatic brain injury) affects approximately 50 million people annually. Headache is the most common symptom after concussion and persists in up to 50% of those affected for at least one-year. The biological underpinnings of and the efficacy and tolerability of treatments for post-traumatic headache has historically received little attention. While treatment in clinical practice is mostly directly at the underlying phenotype of the headache, persistent post-traumatic headache is considered to be less responsive to treatments used to treat migraine or tension-type headache. Over the past several years, significant pre-clinical research has begun to elucidate the mechanism(s) involved in the development of post-traumatic headache, and a concerted effort to evaluate the efficacy of selected treatments for persistent post-traumatic headache has begun. This presentation will review the epidemiology, pathophysiology, and emerging data on the prevention and treatment of post-traumatic headache.

SeminarNeuroscienceRecording

Mechanisms of sleep-seizure interactions in tuberous sclerosis and other mTORpathies

Michael Wong
Washigton University
Jan 4, 2022

An intriguing, relatively unexplored therapeutic avenue to investigate epilepsy is the interaction of sleep mechanisms and seizures. Multiple lines of clinical observations suggest a strong, bi-directional relationship between epilepsy and sleep. Epilepsy and sleep disorders are common comorbidities. Seizures occur more commonly in sleep in many types of epilepsy, and in turn, seizures can cause disrupted sleep. Sudden unexplained death in epilepsy (SUDEP) is strongly associated with sleep. The biological mechanisms underlying this relationship between seizures and sleep are poorly understood, but if better delineated, could offer novel therapeutic approaches to treating both epilepsy and sleep disorders. In this presentation, I will explore this sleep-seizure relationship in mouse models of epilepsy. First, I will present general approaches for performing detailed longitudinal sleep and vigilance state analysis in mice, including pre-weanling neonatal mice. I will then discuss recent data from my laboratory demonstrating an abnormal sleep phenotype in a mouse model of the genetic epilepsy, tuberous sclerosis complex (TSC), and its relationship to seizures. The potential mechanistic basis of sleep abnormalities and sleep-seizure interactions in this TSC model will be investigated, focusing on the role of the mechanistic target of rapamycin (mTOR) pathway and hypothalamic orexin, with potential therapeutic applications of mTOR inhibitors and orexin antagonists. Finally, similar sleep-seizure interactions and mechanisms will be extended to models of acquired epilepsy due to status epilepticus-related brain injury.

SeminarNeuroscience

JAK/STAT regulation of the transcriptomic response during epileptogenesis

Amy Brooks-Kayal
Children's Hospital Colorado / UC Davis
Dec 14, 2021

Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.

SeminarNeuroscienceRecording

Converging mechanisms of epileptogenesis after brain injury

Viji Santhakumar
University of California, Riverside
Oct 5, 2021

Traumatic brain injury (TBI), a leading cause of acquired epilepsy, results in primary cellular injury as well as secondary neurophysiological and inflammatory responses which contribute to epileptogenesis. I will present our recent studies identifying a role for neuro-immune interactions, specifically, the innate immune receptor Toll-like receptor 4 (TLR4), in enhancing network excitability and cell loss in hippocampal dentate gyrus early after concussive brain injury. I will describe results indicating that the transient post-traumatic increases in dentate neurogenesis which occurs during the same early post-injury period augments dentate network excitability and epileptogenesis. I will provide evidence for the beneficial effects of targeting TLR4 and neurogenesis early after brain injury in limiting epileptogenesis. We will discuss potential mechanisms for convergence of the post-traumatic neuro-immune and neurogenic changes and the implications for therapies to reduce neurological deficits and epilepsy after brain injury.

SeminarNeuroscience

Overdrawn at the ion bank: brain injury, neuronal chloride levels, and seizures

Kevin Staley
MassGeneral Hospital for Children
Sep 7, 2021
SeminarNeuroscienceRecording

The role of the complement pathway in post-traumatic sleep disruption and epilepsy

Jeanne Paz
UCSF
Jun 15, 2021

While traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild cortical injury that does not directly damage subcortical structures (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic circuit. Increased C1q expression co-localized with neuron loss and chronic inflammation, and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are the source of thalamic C1q. Since the corticothalamic circuit is important for cognition and sleep, which can be impaired by TBI, this circuit could be a new target for treating TBI-related disabilities

SeminarNeuroscience

Role of Oxytocin in regulating microglia functions to prevent brain damage of the developing brain

Olivier Baud
Division of Neonatology, Department of Pediatrics, Development and growth laboratory, University of Geneva, Switzerland
Feb 1, 2021

Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders in more than 9 million children each year. Both prematurity and IUGR are associated with perinatal systemic inflammation, a key factor associated with neuroinflammation and identified to be the best predictor of subsequent neurological impairments. Most of pharmacological candidates have failed to demonstrate any beneficial effect to prevent perinatal brain damage. In contrast, environmental enrichment based on developmental care, skin-to-skin contact and vocal/music intervention appears to confer positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the perinatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. Excessive cortisol release in response to perinatal stress induces pro-inflammatory and brain-programming effects. These deleterious effects are known to be balanced by Oxytocin (OT), a neuropeptide playing a key role during the perinatal period and parturition, in social behavior and regulating the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with perinatal brain damage, we recently reported that Carbetocin, a brain permeable long-lasting OT receptor (OTR) agonist, was associated with a significant reduction of activated microglia, the primary immune cells of the brain. Moreover this reduced microglia reactivity was associated to a long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the causality between the endogenous OT and central inflammation response to injury has not been established and will be further studied by the lab.

SeminarNeuroscienceRecording

The developing visual brain – answers and questions

Janette Atkinson & Oliver Braddick
UCL & Oxford
Oct 26, 2020

We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.

SeminarNeuroscience

Programmed Axon Death and its Roles in Human Disease

Michael Coleman
University of Cambridge
Oct 19, 2020

Axons degenerate before the neuronal soma in many neurodegenerative diseases. Programmed axon death (Wallerian degeneration) is a widely-occurring mechanism of axon loss that is well understood and preventable in animals. Its aberrant activation by mutation of the pro-survival gene Nmnat2 directly causes axonopathy in mice with severity ranging from mild polyneuropathy to perinatal lethality. Rare biallelic mutations in the homologous human gene cause related phenotypes in patients. NMNAT2 is a negative regulator of the prodegenerative NADase SARM1. Constitutive activation of SARM1 is cytotoxic and the human SARM1 locus is significantly associated with sporadic ALS. Another negative regulator, STMN2, has also been implicated in ALS, where it is commonly depleted downstream of TDP-43. In mice, programmed axon death can be robustly blocked by deletion of Sarm1, or by overexpression, axonal targeting and/or stabilization of various NMNAT isoforms. This alleviates models of many human disorders including some forms of peripheral neuropathy, motor neuron diseases, glaucoma, Parkinson’s disease and traumatic brain injury, and it confers lifelong rescue on the lethal Nmnat2 null phenotype and other conditions. Drug discovery programs now aim to achieve similar outcomes in human disease. In order to optimize the use of such drugs, we have characterized a range of human NMNAT2 and SARM1 functional variants that underlie a spectrum of axon vulnerability in the human population. Individuals at the vulnerable end of this spectrum are those most likely to benefit from drugs blocking programmed axon death, and disorders associated with these genotypes are promising indications in which to apply them.

SeminarNeuroscienceRecording

Affordable Robots/Computer Systems to Identify, Assess, and Treat Impairment After Brain Injury

Michelle Johnson
University of Pennsylvania, Department of Physical Medicine and Rehabilitation and Department of BioEngineering
Oct 6, 2020

Non-traumatic brain injury due to stroke, cerebral palsy and HIV often result in serious long-term disability worldwide, affecting more than 150 million persons globally; with the majority of persons living in low and middle income countries. These diseases often result in varying levels of motor and cognitive impairment due to brain injury which then affects the person’s ability to complete activities of daily living and fully participate in society. Increasingly advanced technologies are being used to support identification, diagnosis, assessment, and therapy for patients with brain injury. Specifically, robot and mechatronic systems can provide patients, physicians and rehabilitation clinical providers with additional support to care for and improve the quality of life of children and adults with motor and cognitive impairment. This talk will provide a brief introduction to the area of rehabilitation robotics and, via case studies, illustrate how computer/technology-assisted rehabilitation systems can be developed and used to assess motor and cognitive impairment, detect early evidence of functional impairment, and augment therapy in high and low-resource settings.

ePoster

Association of insulin-like growth factor 1 with post-traumatic brain injury sleep disorders: A longitudinal study

Kai-Yun Chen, Ju-Chi Ou, Yung-Hsiao Chiang, John Chung-Che Wu

FENS Forum 2024

ePoster

CCL5 promotes neuronal restoration after brain injury

Szu-Yi Chou, Man-Hau Ho, Barry Hoffer

FENS Forum 2024

ePoster

Cinchonidine, an alkaloid derived from Cinchona, demonstrates neuroprotective properties against ischemic brain injury by enhancing cellular protection in cerebral endothelial cells

Cheng-ying Hsieh, Kuan-Jung Lu

FENS Forum 2024

ePoster

Delivery of PTEN inhibitory peptide PAP2 to promote regeneration in a mouse model of traumatic brain injury

Karla Kristine Rivera, Yu-Liang Tsai, Christopher Synatschke, Bernd Knöll

FENS Forum 2024

ePoster

Effects of dietary supplementation with deuterated polyunsaturated fatty acids in experimental traumatic brain injury

Ozgun Mavuk, Mikhail S. Shchepinov, Jordi L. Tremoleda, Adina T. Michael-Titus

FENS Forum 2024

ePoster

Enhancing recovery after traumatic brain injury by pharmacological modulation of the PTEN/AKT pathway

Anne-Sophie Gutt, Bernd Knöll

FENS Forum 2024

ePoster

Evaluating the effect of astrocyte-derived cholesterol on oligodendroglial maturation in an in vitro model of hypoxic brain injury

Vadanya Shrivastava, Devanjan Dey, Sagar Tyagi, Archna Singh, Jai Bhagwan Sharma, Jayanth Kumar Palanichamy, Pankaj Seth, Sudip Sen

FENS Forum 2024

ePoster

Functional implications of traumatic brain injury-induced changes in serine/threonine kinase activity and peptide phosphorylation in mouse cortex

Celine Gallagher, Thomas Mittmann

FENS Forum 2024

ePoster

Functional interaction between traumatic brain injury and Alzheimer’s disease in next-gen humanized mice models

Amr Eed, Jake Hamilton, Xiaoyun Xu, Nicole Geremia, Corey A. Baron, Arthur Brown, Ravi S. Menon

FENS Forum 2024

ePoster

Functional and morphological alterations of parvalbumin-positive interneurons in the somatosensory cortex of mice in the early phase after traumatic brain injury

Qiang W, Werner Kilb, Thomas Mittmann

FENS Forum 2024

ePoster

Human pluripotent stem cell-derived ectomesenchymal cells promote neurogenesis and neurite outgrowth in rats with hypoxic-ischemic brain injury through the ERK/CREB signaling pathway

Jiawei Huang, Qingwen Deng, Xiaohua Jiang

FENS Forum 2024

ePoster

Hyperbaric oxygenation enhances neurogenesis in subventricular zone after traumatic brain injury

Rada Jeremic, Sanja Dacic, Sanja Pekovic, Marina Djelic, Predrag Brkic

FENS Forum 2024

ePoster

Intervention with a medical multi-nutrient in traumatic brain injury – a feasibility trial

Isabell Nessel, Simon C. Dyall, Laus M. Broersen, Arnoud Carol, Ardy van Helvoort, Adina T. Michael-Titus, Christopher E. G. Uff

FENS Forum 2024

ePoster

Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes

Yamei Tang

FENS Forum 2024

ePoster

Mitochondrial dysfunction underlies impaired neurovascular coupling following traumatic brain injury

Gerben Van Hameren, Jamil Muradov, Anna Minarik, Refat Aboghazleh, Sophie Orr, Mark Maclean, Alon Friedman

FENS Forum 2024

ePoster

Mitochondrial fission regulates reactive astrocyte response to acute brain injury

Abdulla Chihab, Milica Jevtic, Felix Gaedke, Hiromi Sesaki, Elisa Motori, Matteo Bergami

FENS Forum 2024

ePoster

Nestin-Cre-mediated progranulin expression partially rescues exacerbated consequences in progranulin-deficient mice after traumatic brain injury

Sudena Wang, Christin Fröhlich, Regina Hummel, Irmgard Tegeder, Michael K. E Schäfer

FENS Forum 2024

ePoster

Neurological outcome and tissue response of ageing rats in two models of acquired brain injury

Tatenda Mutshiya, Ping Yip, Adina T Michael-Titus

FENS Forum 2024

ePoster

Oxytocin as a novel therapeutic target to reduce neuroinflammation and protect brain development following pediatric traumatic brain injury

Marit Knoop, Marie-Laure Possovre, Ece Trak, Kelly Ceyzériat, Yohan Van de Looij, Alice Jacquens, Olivier Baud

FENS Forum 2024

ePoster

Persistent astrogliosis and microgliosis in the perilesional cortex after traumatic brain injury in male and female rats

Zuzanna Rauk, Zuzanna Setkowicz

FENS Forum 2024

ePoster

Pharmacological evaluation of novel non-nucleotide purine derivatives as P2X7 antagonists for the treatment of neuroinflammation in traumatic brain injury

Inés Valencia-Fernández, Andrea Pastor-Martínez, Céline Decouty-Perez, Ana Belén Lopez-Rodriguez, María Álvarez-Rubal, Francesco Calzaferri, Cristóbal De Los Ríos, Javier Egea

FENS Forum 2024

ePoster

Sex-dependent effects of voluntary physical exercise on object recognition memory restoration after traumatic brain injury in middle-aged rats

David Costa, Meritxell Torras-Garcia, Odette Estrella, Isabel Portell-Cortés, Gemma Manich, Beatriz Almolda, Berta González, Margalida Coll-Andreu

FENS Forum 2024

ePoster

Spatial transcriptomics-correlated electron microscopy integrates transcriptional and ultrastructural responses to brain injury

Peter Androvic, Martina Schifferer, Katrin Perez Anderson, Ludovico Cantuti-Castelvetri, Hanyi Jiang, Hao Ji, Lu Liu, Garyfallia Gouna, Stefan Berghoff, Simon Besson-Girard, Johanna Knoferle, Mikael Simons, Ozgun Gokce

FENS Forum 2024

ePoster

Temporal analysis of the infiltration dynamics of pro-inflammatory cytokine-producing innate and adaptive immune cells following experimental traumatic brain injury in mice

Sahil Threja, Nathan Strogulski, Janeen Laabei, Béré Diallo, Carly Douglas, Kingston Mills, David Loane

FENS Forum 2024

ePoster

Treatment of traumatic brain injury by atorvastatin-loaded PEGylated liposome

Eunsol Hwang, Jihye Kim, Jahae Kim, Kangho Choi

FENS Forum 2024

ePoster

Unmasking microglial responses to traumatic brain injury and neural probes through morphometric analysis – MicroFACE

Vatsalkumar Daxeshkumar Jariwala, Carloa Haas, Ulrich Hofmann, Vidhya Ravi, Janne Töykkälä, Midori Johnston, Jürgen Beck, Kevin Joseph

FENS Forum 2024

ePoster

Unveiling microvascular occlusions in traumatic brain injury: Insights into blood-brain barrier permeability using super-bright nanoparticles

Atonia Clarissa Wehn, Martina Fetting, Andrey Klymchenko, Nikolaus Plesnila, Igor Khalin

FENS Forum 2024

ePoster

Distant mild traumatic brain injury: a review of electrophysiological and imaging findings at late times after concussion

Tomasz Kuliński

Neuromatch 5