← Back

Calcium Dynamics

Topic spotlight
TopicWorld Wide

calcium dynamics

Discover seminars, jobs, and research tagged with calcium dynamics across World Wide.
7 curated items4 ePosters3 Seminars
Updated about 4 years ago
7 items · calcium dynamics
7 results
SeminarNeuroscienceRecording

Noise-induced properties of active dendrites

Farzada Farkhooi
Humboldt University Berlin
Nov 16, 2021

Neuronal dendritic trees display a wide range of nonlinear input integrations due to their voltage-dependent active calcium channels. We reveal that in vivo-like fluctuating input enhances nonlinearity substantially in a single dendritic compartment and shifts the input-output relation to exhibiting nonmonotonous or bistable dynamics. In particular, with the slow activation of calcium dynamics, we analyze noise-induced bistability and its timescales. We show bistability induces long-timescale fluctuation that can account for observed dendritic plateau potentials in vivo conditions. In a multicompartmental model neuron with realistic synaptic input, we show that noise-induced bistability persists in a wide range of parameters. Using Fredholm's theory to calculate the spiking rate of multivariable neurons, we discuss how dendritic bistability shifts the spiking dynamics of single neurons and its implications for network phenomena in the processing of in vivo–like fluctuating input.

SeminarNeuroscience

Functional and structural loci of individuality in the Drosophila olfactory circuit

Benjamin de Bivort
Harvard University
Oct 7, 2020

Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioral individuality, because while the neural circuit underlying olfactory behavior is well-described and highly stereotyped, persistent idiosyncrasy in behavior, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioral responses remains unknown. Here, using paired behavior and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behavior and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behavior. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behavior among individuals.

SeminarNeuroscienceRecording

Functional and structural loci of individuality in the Drosophila olfactory circuit

Benjamin de Bivort
Harvard University
Jun 23, 2020

behaviour varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioural individuality, because while the neural circuit underlying olfactory behaviour is well-described and highly stereotyped, persistent idiosyncrasy in behaviour, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioural responses remains unknown. Here, using paired behaviour and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behaviour and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behaviour. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behaviour among individuals.

ePoster

Presynaptic Activity-dependent calcium dynamics in cytosol & ER, and a brief proposal for a morphodynamic model of growth cone motility

Nicole Flores-Pretell, Ranjita Dutta Roy, Daniel Gonzalez-Esparza, Dmitry Logashenko, Markus Breit, Markus Knodel, Gabriel Wittum

Bernstein Conference 2024

ePoster

Presynaptic calcium dynamics in cytosol and ER and the interplay of ER membrane located pumps and channels

Nicole Flores-Pretell, Ranjita Dutta Roy, Markus Breit, Markus M. Knodel, Gabriel Wittum

FENS Forum 2024

ePoster

Spontaneous mesoscale calcium dynamics reflect the development of the modular functional architecture of the mouse cortex

Davide Warm, Davide Bassetti, Levente Gellèrt, Jenq-Wei Yang, Heiko J. Luhmann, Anne Sinning

FENS Forum 2024

ePoster

State dependence of pontine astrocyte calcium dynamics across sleep-wake cycles

Yuri Elias Rodrigues, Lucy Morton, Symeon Gerasimou, Jun Nagai, Shuzo Sakata

FENS Forum 2024