Cambridge
cambridge
Cambridge Centre for Myelin Repair
We are looking for a motivated and independent research associate to join a MS funded research project to answer the MS Society's top research question: "which treatments are effective to slow, stop or reverse the accumulation of disability associated with MS?". The role would investigate fundamental mechanisms of remyelination and study how myelin is normally repaired in animals and people with MS and then identify ways of targeting this therapeutically.
Carl Rasmussen, Bernhard Schölkopf
The University of Cambridge Machine Learning Group and the Max Planck Institute for Intelligent Systems Empirical Inference Department in Tübingen are two of the world’s leading centres for machine learning research. In 2014, we launched a new and exciting initiative whereby a small group of select PhD candidates are jointly supervised at both institutions. The principal supervisors are Carl Rasmussen, Neil Lawrence, Ferenc Huszar, Jose Miguel Hernandez-Lobato, David Krueger, Adrian Weller and Rika Antonova at Cambridge University, and Bernhard Schölkopf and other research group leaders at the Max Planck Institute in Tübingen. This program is specific for candidates whose research interests are well-matched to both the principal supervisors in Cambridge and the MPI for Intelligent Systems in Tuebingen. The overall duration of the PhD will be four years, with roughly three years spent at one location, and one year spent at the other location, including initial coursework at the University of Cambridge. Successful PhDs will be officially granted by the University of Cambridge.
The SIMple microscope: Development of a fibre-based platform for accessible SIM imaging in unconventional environments
Advancements in imaging speed, depth and resolution have made structured illumination microscopy (SIM) an increasingly powerful optical sectioning (OS) and super-resolution (SR) technique, but these developments remain inaccessible to many life science researchers due to the cost, optical complexity and delicacy of these instruments. We address these limitations by redesigning the optical path using in-line fibre components that are compact, lightweight and easily assembled in a “Plug & Play” modality, without compromising imaging performance. They can be integrated into an existing widefield microscope with a minimum of optical components and alignment, making OS-SIM more accessible to researchers with less optics experience. We also demonstrate a complete SR-SIM imaging system with dimensions 300 mm × 300 mm × 450 mm. We propose to enable accessible SIM imaging by utilising its compact, lightweight and robust design to transport it where it is needed, and image in “unconventional” environments where factors such as temperature and biosafety considerations currently limit imaging experiments.
Against cortical reorganisation: lessons from deprivation following hand loss
Rett syndrome, MECP2 and therapeutic strategies
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.
Screen Savers : Protecting adolescent mental health in a digital world
In our rapidly evolving digital world, there is increasing concern about the impact of digital technologies and social media on the mental health of young people. Policymakers and the public are nervous. Psychologists are facing mounting pressures to deliver evidence that can inform policies and practices to safeguard both young people and society at large. However, research progress is slow while technological change is accelerating.My talk will reflect on this, both as a question of psychological science and metascience. Digital companies have designed highly popular environments that differ in important ways from traditional offline spaces. By revisiting the foundations of psychology (e.g. development and cognition) and considering digital changes' impact on theories and findings, we gain deeper insights into questions such as the following. (1) How do digital environments exacerbate developmental vulnerabilities that predispose young people to mental health conditions? (2) How do digital designs interact with cognitive and learning processes, formalised through computational approaches such as reinforcement learning or Bayesian modelling?However, we also need to face deeper questions about what it means to do science about new technologies and the challenge of keeping pace with technological advancements. Therefore, I discuss the concept of ‘fast science’, where, during crises, scientists might lower their standards of evidence to come to conclusions quicker. Might psychologists want to take this approach in the face of technological change and looming concerns? The talk concludes with a discussion of such strategies for 21st-century psychology research in the era of digitalization.
Dyslexia, Rhythm, Language and the Developing Brain
Dysfunctional translation in disease
In the fifth of this year’s Brain Prize webinars, Emily Osterweil (Harvard Medical School, USA), Gary Bassell (Emory University, USA) and Giovanna Mallucci (Altos Labs, UK) will present their work on dysfunctional translation in disease. Each speaker will present for 25 minutes, and the webinar will conclude with an open discussion. The webinar will be moderated by two of the winners of the 2023 Brain Prize, Michael Greenberg and Erin Schuman.
Dyslexia, Rhythm, Language and the Developing Brain
Recent insights from auditory neuroscience provide a new perspective on how the brain encodes speech. Using these recent insights, I will provide an overview of key factors underpinning individual differences in children’s development of language and phonology, providing a context for exploring atypical reading development (dyslexia). Children with dyslexia are relatively insensitive to acoustic cues related to speech rhythm patterns. This lack of rhythmic sensitivity is related to the atypical neural encoding of rhythm patterns in speech by the brain. I will describe our recent data from infants as well as children, demonstrating developmental continuity in the key neural variables.
The Brain Prize winner's webinar
In 2023, Michael Greenberg (Harvard, USA), Erin Schuman (Max Planck Institute for Brain Research, Germany) and Christine Holt (University of Cambridge, UK) were awarded The Brain Prize for their pioneering work on activity-dependent gene transcription and local mRNA translation. In this webinar, all 3 Brain Prize winners will present their work. Each speaker will present for 25 minutes and the webinar will conclude with an open discussion. The webinar will be moderated by Kelsey Martin from the Simons Foundation.
Spatial and Single Cell Genomics for Next Generation Neuroscience
The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections. In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution. Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures. I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types. Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.
A recurrent network model of planning explains hippocampal replay and human behavior
When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as 'rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by - and in turn adaptively affect - prefrontal dynamics.
Immunosuppression for Parkinson's disease - a new therapeutic strategy?
Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.
Feedback control in the nervous system: from cells and circuits to behaviour
The nervous system is fundamentally a closed loop control device: the output of actions continually influences the internal state and subsequent actions. This is true at the single cell and even the molecular level, where “actions” take the form of signals that are fed back to achieve a variety of functions, including homeostasis, excitability and various kinds of multistability that allow switching and storage of memory. It is also true at the behavioural level, where an animal’s motor actions directly influence sensory input on short timescales, and higher level information about goals and intended actions are continually updated on the basis of current and past actions. Studying the brain in a closed loop setting requires a multidisciplinary approach, leveraging engineering and theory as well as advances in measuring and manipulating the nervous system. I will describe our recent attempts to achieve this fusion of approaches at multiple levels in the nervous system, from synaptic signalling to closed loop brain machine interfaces.
Targeting Maladaptive Emotional Memories to Treat Mental Health Disorders: Insights from Rodent Models
Maladaptive emotional memories contribute to the persistence of numerous mental health disorders, including post-traumatic stress disorder (PTSD), drug addiction and obsessive-compulsive disorder (OCD). Using rodent behavioural models of the psychological processes relevant to these disorders, it is possible to identify potential treatment targets for the development of new therapies, including those based upon disrupting the reconsolidation of maladaptive emotional memories. Using examples from rodent models relevant to multiple mental health disorders, this talk will consider some of the opportunities and challenges that this approach provides.
Fragile minds in a scary world: trauma and post traumatic stress in very young children
Post traumatic stress disorder (PTSD) is a prevalent and disabling condition that affects larger numbers of children and adolescents worldwide. Until recently, we have understood little about the nature of PTSD reactions in our youngest children (aged under 8 years old). This talk describes our work over the last 15 years working with this very young age group. It overviews how we need a markedly different PTSD diagnosis for very young children, data on the prevalence of this new diagnostic algorithm, and the development of a psychological intervention and its evaluation in a clinical trial.
Integrative Neuromodulation: from biomarker identification to optimizing neuromodulation
Why do we make decisions impulsively blinded in an emotionally rash moment? Or caught in the same repetitive suboptimal loop, avoiding fears or rushing headlong towards illusory rewards? These cognitive constructs underlying self-control and compulsive behaviours and their influence by emotion or incentives are relevant dimensionally across healthy individuals and hijacked across disorders of addiction, compulsivity and mood. My lab focuses on identifying theory-driven modifiable biomarkers focusing on these cognitive constructs with the ultimate goal to optimize and develop novel means of neuromodulation. Here I will provide a few examples of my group’s recent work to illustrate this approach. I describe a series of recent studies on intracranial physiology and acute stimulation focusing on risk taking and emotional processing. This talk highlights the subthalamic nucleus, a common target for deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder. I further describe recent translational work in non-invasive neuromodulation. Together these examples illustrate the approach of the lab highlighting modifiable biomarkers and optimizing neuromodulation.
Fidelity and Replication: Modelling the Impact of Protocol Deviations on Effect Size
Cognitive science and cognitive neuroscience researchers have agreed that the replication of findings is important for establishing which ideas (or theories) are integral to the study of cognition across the lifespan. Recently, high-profile papers have called into question findings that were once thought to be unassailable. Much attention has been paid to how p-hacking, publication bias, and sample size are responsible for failed replications. However, much less attention has been paid to the fidelity by which researchers enact study protocols. Researchers conducting education or clinical trials are aware of the importance in fidelity – or the extent to which the protocols are delivered in the same way across participants. Nevertheless, this idea has not been applied to cognitive contexts. This seminar discusses factors that impact the replicability of findings alongside recent models suggesting that even small fidelity deviations have real impacts on the data collected.
Valentine’s Day for people with multiple sclerosis: promoting brain repair through remyelination
Current disease-modifying therapies in multiple sclerosis are all focused on suppressing the inflammatory phase of the disease. This has been extremely successful, and it is doubtful that significantly more efficacious anti-inflammatory treatments will be found. However, it remains the case that people with relapsing-remitting multiple sclerosis acquire disability on treatment, and enter the secondary progressive phase. I argue that we now need treatments that prevent neuronal degeneration. The most promising approach is to prevent axons degenerating by remyelination. Since the discovery that the adult brain contains stem cells which can remyelinate, the problem now is how to promote endogenous remyelination, and how to know when we have achieved this! We have successfully identified one drug which promotes remyelination but unfortunately it is too toxic for use in the clinic. So the hunt continues.
Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being
Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.
Spatially-embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings
Brain networks exist within the confines of resource limitations. As a result, a brain network must overcome metabolic costs of growing and sustaining the network within its physical space, while simultaneously implementing its required information processing. To observe the effect of these processes, we introduce the spatially-embedded recurrent neural network (seRNN). seRNNs learn basic task-related inferences while existing within a 3D Euclidean space, where the communication of constituent neurons is constrained by a sparse connectome. We find that seRNNs, similar to primate cerebral cortices, naturally converge on solving inferences using modular small-world networks, in which functionally similar units spatially configure themselves to utilize an energetically-efficient mixed-selective code. As all these features emerge in unison, seRNNs reveal how many common structural and functional brain motifs are strongly intertwined and can be attributed to basic biological optimization processes. seRNNs can serve as model systems to bridge between structural and functional research communities to move neuroscientific understanding forward.
Programmed axon death: from animal models into human disease
Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.
Can we have jam today and jam tomorrow ?Improving outcomes for older people living with mental illness using applied and translational research
This talk will examine how approaches such as ‘big data’ and new ways of delivering clinical trials can improve current services for older people with mental illness (jam today) and identify and deliver new treatments in the future (jam tomorrow).
What's wrong with the prosopagnosia literature? A new approach to diagnosing and researching the condition
Developmental prosopagnosia is characterised by severe, lifelong difficulties when recognising facial identity. Most researchers require prosopagnosia cases exhibit ultra-conservative levels of impairment on the Cambridge Face Memory Test before they include them in their experiments. This results in the majority of people who believe that they have this condition being excluded from the scientific literature. In this talk I outline the many issues that will afflict prosopagnosia research if this continues, and show that these excluded cases do exhibit impairments on all commonly used diagnostic tests when a group-based method of assessment is utilised. I propose a paradigm shift away from cognitive task-based approaches to diagnosing prosopagnosia, and outline a new way that researchers can investigate this condition.
Spinal interneurons
How can we treat visceral pain?
Chronic pain is a leading cause of morbidity, common to patients with gastrointestinal diseases such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Most pain killers are largely ineffective against this type of pain or restricted for use in these patients due to gut related complications and risk of addition. A significant unmet clinical need therefore exists to develop novel non-opioid based visceral analgesics.
Developmental disorders of presynaptic vesicle cycling - Synaptotagmin-1 and beyond
Post-diagnostic research on rare genetic developmental disorders presents new opportunities (and a few challenges) for discovery neuroscience and translation. In this talk, Kate will describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence pre-synaptic vesicle cycling (SVC disorders). She will focus on Synaptotagmin-1 Associated Neurodevelopmental Disorder (also known as Baker Gordon Syndrome), first described in 2015 and now diagnosed in more than 50 children and young people worldwide. She will then present work-in-progress by her group on the neurodevelopmental spectrum of SVC disorders more broadly, and discuss opportunities for collaborative neuroscience which can bridge the gaps between genetic cause and complex neurological, cognitive and mental health outcomes.
Hypothalamic episode generators underlying the neural control of fertility
The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.
A multi-level account of hippocampal function in concept learning from behavior to neurons
A complete neuroscience requires multi-level theories that address phenomena ranging from higher-level cognitive behaviors to activities within a cell. Unfortunately, we don't have cognitive models of behavior whose components can be decomposed into the neural dynamics that give rise to behavior, leaving an explanatory gap. Here, we decompose SUSTAIN, a clustering model of concept learning, into neuron-like units (SUSTAIN-d; decomposed). Instead of abstract constructs (clusters), SUSTAIN-d has a pool of neuron-like units. With millions of units, a key challenge is how to bridge from abstract constructs such as clusters to neurons, whilst retaining high-level behavior. How does the brain coordinate neural activity during learning? Inspired by algorithms that capture flocking behavior in birds, we introduce a neural flocking learning rule to coordinate units that collectively form higher-level mental constructs ("virtual clusters"), neural representations (concept, place and grid cell-like assemblies), and parallels recurrent hippocampal activity. The decomposed model shows how brain-scale neural populations coordinate to form assemblies encoding concept and spatial representations, and why many neurons are required for robust performance. Our account provides a multi-level explanation for how cognition and symbol-like representations are supported by coordinated neural assemblies formed through learning.
Zero to Birth: How the Human Brain is Built
By the time a baby is born, its brain is equipped with tens of billions of intricately crafted neurons wired together to form a compact and breathtakingly efficient supercomputer. The book is meant to give a broad audience (i.e. non-neuroscientists) a sense of the step-by-step construction of a human brain as well as our current conceptual understanding of various processes involved. The book also hopes to highlight relevance of brain development to our growing understanding of cognitive and psychological variations and syndromes. The author will talk about the book including the many challenges and rewards involved in writing it.
Optimal information loading into working memory in prefrontal cortex
Working memory involves the short-term maintenance of information and is critical in many tasks. The neural circuit dynamics underlying working memory remain poorly understood, with different aspects of prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analysis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto ignored aspect of working memory dynamics: information loading. We find that, contrary to common assumptions, optimal information loading involves inputs that are largely orthogonal, rather than similar, to the persistent activities observed during memory maintenance. Using a novel, theoretically principled metric, we show that PFC exhibits the hallmarks of optimal information loading and we find that such dynamics emerge naturally as a dynamical strategy in task-optimized recurrent neural networks. Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor or purely sequential dynamics, and reveals a normative principle underlying the widely observed phenomenon of dynamic coding in PFC.
Careers for neuroscience in Artificial Intelligence
The purpose of this event is twofold: to raise awareness of careers in AI to neuroscience postgraduate and Early Career Researchers (ECRs), and to give the chance for commercial organisations to acquire and diversify their talent pool. We know that our early career members are highly motivated and interested in different career pathways, and wish to help them fulfil their ambitions. This will be a hybrid event held in person at Arca Blanca, Covent Garden, London and also available online. FREE for BNA members!
Untitled Seminar
Apathy and impulsivity in neurological disease – cause, effect and treatment
Exploring mechanisms of human brain expansion in cerebral organoids
The human brain sets us apart as a species, with its size being one of its most striking features. Brain size is largely determined during development as vast numbers of neurons and supportive glia are generated. In an effort to better understand the events that determine the human brain’s cellular makeup, and its size, we use a human model system in a dish, called cerebral organoids. These 3D tissues are generated from pluripotent stem cells through neural differentiation and a supportive 3D microenvironment to generate organoids with the same tissue architecture as the early human fetal brain. Such organoids are allowing us to tackle questions previously impossible with more traditional approaches. Indeed, our recent findings provide insight into regulation of brain size and neuron number across ape species, identifying key stages of early neural stem cell expansion that set up a larger starting cell number to enable the production of increased numbers of neurons. We are also investigating the role of extrinsic regulators in determining numbers and types of neurons produced in the human cerebral cortex. Overall, our findings are pointing to key, human-specific aspects of brain development and function, that have important implications for neurological disease.
The balance of excitation and inhibition and a canonical cortical computation
Excitatory and inhibitory (E & I) inputs to cortical neurons remain balanced across different conditions. The balanced network model provides a self-consistent account of this observation: population rates dynamically adjust to yield a state in which all neurons are active at biological levels, with their E & I inputs tightly balanced. But global tight E/I balance predicts population responses with linear stimulus-dependence and does not account for systematic cortical response nonlinearities such as divisive normalization, a canonical brain computation. However, when necessary connectivity conditions for global balance fail, states arise in which only a localized subset of neurons are active and have balanced inputs. We analytically show that in networks of neurons with different stimulus selectivities, the emergence of such localized balance states robustly leads to normalization, including sublinear integration and winner-take-all behavior. An alternative model that exhibits normalization is the Stabilized Supralinear Network (SSN), which predicts a regime of loose, rather than tight, E/I balance. However, an understanding of the causal relationship between E/I balance and normalization in SSN and conditions under which SSN yields significant sublinear integration are lacking. For weak inputs, SSN integrates inputs supralinearly, while for very strong inputs it approaches a regime of tight balance. We show that when this latter regime is globally balanced, SSN cannot exhibit strong normalization for any input strength; thus, in SSN too, significant normalization requires localized balance. In summary, we causally and quantitatively connect a fundamental feature of cortical dynamics with a canonical brain computation. Time allowing I will also cover our work extending a normative theoretical account of normalization which explains it as an example of efficient coding of natural stimuli. We show that when biological noise is accounted for, this theory makes the same prediction as the SSN: a transition to supralinear integration for weak stimuli.
Brain and behavioural impacts of early life adversity
Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.
Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations
To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.
Network science and network medicine: New strategies for understanding and treating the biological basis of mental ill-health
The last twenty years have witnessed extraordinarily rapid progress in basic neuroscience, including breakthrough technologies such as optogenetics, and the collection of unprecedented amounts of neuroimaging, genetic and other data relevant to neuroscience and mental health. However, the translation of this progress into improved understanding of brain function and dysfunction has been comparatively slow. As a result, the development of therapeutics for mental health has stagnated too. One central challenge has been to extract meaning from these large, complex, multivariate datasets, which requires a shift towards systems-level mathematical and computational approaches. A second challenge has been reconciling different scales of investigation, from genes and molecules to cells, circuits, tissue, whole-brain, and ultimately behaviour. In this talk I will describe several strands of work using mathematical, statistical, and bioinformatic methods to bridge these gaps. Topics will include: using artificial neural networks to link the organization of large-scale brain connectivity to cognitive function; using multivariate statistical methods to link disease-related changes in brain networks to the underlying biological processes; and using network-based approaches to move from genetic insights towards drug discovey. Finally, I will discuss how simple organisms such as C. elegans can serve to inspire, test, and validate new methods and insights in networks neuroscience.
Cross-modality imaging of the neural systems that support executive functions
Executive functions refer to a collection of mental processes such as attention, planning and problem solving, supported by a frontoparietal distributed brain network. These functions are essential for everyday life. Specifically in the context of patients with brain tumours there is a need to preserve them in order to enable good quality of life for patients. During surgeries for the removal of a brain tumour, the aim is to remove as much as possible of the tumour and at the same time prevent damage to the areas around it to preserve function and enable good quality of life for patients. In many cases, functional mapping is conducted during an awake surgery in order to identify areas critical for certain functions and avoid their surgical resection. While mapping is routinely done for functions such as movement and language, mapping executive functions is more challenging. Despite growing recognition in the importance of these functions for patient well-being in recent years, only a handful of studies addressed their intraoperative mapping. In the talk, I will present our new approach for mapping executive function areas using electrocorticography during awake brain surgery. These results will be complemented by neuroimaging data from healthy volunteers, directed at reliably localizing executive function regions in individuals using fMRI. I will also discuss more broadly challenges ofß using neuroimaging for neurosurgical applications. We aim to advance cross-modality neuroimaging of cognitive function which is pivotal to patient-tailored surgical interventions, and will ultimately lead to improved clinical outcomes.
Apathy and Anhedonia in Adult and Adolescent Cannabis Users and Controls Before and During the COVID-19 Pandemic Lockdown
COVID-19 lockdown measures have caused severe disruptions to work and education and prevented people from engaging in many rewarding activities. Cannabis users may be especially vulnerable, having been previously shown to have higher levels of apathy and anhedonia than non-users. In this survey study, we measured apathy and anhedonia, before and after lockdown measures were implemented, in n = 256 adult and n = 200 adolescent cannabis users and n = 170 adult and n = 172 adolescent controls. Scores on the Apathy Evaluation Scale (AES) and Snaith-Hamilton Pleasure Scale (SHAPS) were investigated with mixed-measures ANCOVA, with factors user group, age group, and time, controlling for depression, anxiety, and other drug use. Adolescent cannabis users had significantly higher SHAPS scores before lockdown, indicative of greater anhedonia, compared with adolescent controls (P = .03, η p2 = .013). Contrastingly, adult users had significantly lower scores on both the SHAPS (P < .001, η p2 = .030) and AES (P < .001, η p2 = .048) after lockdown compared with adult controls. Scores on both scales increased during lockdown across groups, and this increase was significantly smaller for cannabis users (AES: P = .001, η p2 = .014; SHAPS: P = .01, η p2 = .008). Exploratory analyses revealed that dependent cannabis users had significantly higher scores overall (AES: P < .001, η p2 = .037; SHAPS: P < .001, η p2 = .029) and a larger increase in scores (AES: P = .04, η p2 =.010; SHAPS: P = .04, η p2 = .010), compared with non-dependent users. Our results suggest that adolescents and adults have differential associations between cannabis use as well as apathy and anhedonia. Within users, dependence may be associated with higher levels of apathy and anhedonia regardless of age and a greater increase in levels during the COVID-19 lockdown.
Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate
Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.
Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?
Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.
How bilingualism modulates the neural mechanisms of selective attention
Learning and using multiple languages places considerable demands on our cognitive system, and has been shown to modulate the mechanisms of selective attention in both children and adults. Yet the nature of these adaptive changes is still not entirely clear. One possibility is that bilingualism boosts the capacity for selective attention; another is that it leads to a different distribution of this finite resource, aimed at supporting optimal performance under the increased processing demands. I will present a series of studies investigating the nature of modifications of selective attention in bilingualism. Using behavioural and neuroimaging techniques, our data confirm that bilingualism modifies the neural mechanisms of selective attention even in the absence of behavioural differences between monolinguals and bilinguals. They further suggest that, instead of enhanced attentional capacity, these neuroadaptive modifications appear to reflect its redistribution, arguably aimed at economising the available resources to support optimal behavioural performance.
Towards an inclusive neurobiology of language
Understanding how our brains process language is one of the fundamental issues in cognitive science. In order to reach such understanding, it is critical to cover the full spectrum of manners in which humans acquire and experience language. However, due to a myriad of socioeconomic factors, research has disproportionately focused on monolingual English speakers. In this talk, I present a series of studies that systematically target fundamental questions about bilingual language use across a range of conversational contexts, both in production and comprehension. The results lay the groundwork to propose a more inclusive theory of the neurobiology of language, with an architecture that assumes a common selection principle at each linguistic level and can account for attested features of both bilingual and monolingual speech in, but crucially also out of, experimental settings.
Brain chart for the human lifespan
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.
Stress deceleration theory: chronic adolescent stress exposure results in decelerated neurobehavioral maturation
Normative development in adolescence indicates that the prefrontal cortex is still under development thereby unable to exert efficient top-down inhibitory control on subcortical regions such as the basolateral amygdala and the nucleus accumbens. This imbalance in the developmental trajectory between cortical and subcortical regions is implicated in expression of the prototypical impulsive, compulsive, reward seeking and risk-taking adolescent behavior. Here we demonstrate that a chronic mild unpredictable stress procedure during adolescence in male Wistar rats arrests the normal behavioral maturation such that they continue to express adolescent-like impulsive, hyperactive, and compulsive behaviors into late adulthood. This arrest in behavioral maturation is associated with the hypoexcitability of prelimbic cortex (PLC) pyramidal neurons and reduced PLC-mediated synaptic glutamatergic control of BLA and nucleus accumbens core (NAcC) neurons that lasts late into adulthood. At the same time stress exposure in adolescence results in the hyperexcitability of the BLA pyramidal neurons sending stronger glutamatergic projections to the NAcC. Chemogenetic reversal of the PLC hypoexcitability decreased compulsivity and improved the expression of goal-directed behavior in rats exposed to stress during adolescence, suggesting a causal role for PLC hypoexcitability in this stress-induced arrested behavioral development. (https://www.biorxiv.org/content/10.1101/2021.11.21.469381v1.abstract)
Common elements: An innovative methodology for identifying effective interventions in early childhood education
Evidence-based education programmes, like many clinical interventions, are multi-faceted and can be expensive to implement. In this talk I will describe an alternative: distilling the common elements across many evidence-based programmes. Published programme manuals are selected through systematic review, then extensively coded and cross-referenced. Finally, the common elements that emerge are shared with practitioners as part of a ‘library’ of practices (rather than a holistic programme manual). Although the common elements methodology has been used in the prevention and intervention sciences, this project reflects the first attempt at applying this approach to early childhood education. I will describe the common elements methods and preliminary findings from our Nuffield-funded project, in collaboration with the Early Intervention Foundation. I will discuss the challenges and opportunities we have encountered, alongside our strategies for sharing evidence with practitioners in a digestible way.
Improving the identification of cardiometabolic risk in early psychosis
People with chronic schizophrenia die on average 10-15 years sooner than the general population, mostly due to physical comorbidity. While sociodemographic, chronic lifestyle and iatrogenic factors are important contributors to this comorbidity, a growing body of research is beginning to suggest that early signs of cardiometabolic dysfunction may be present from the onset of psychosis in some young adults, and may even be detectable before the onset of psychosis. Given that primary prevention is the best means to prevent the onset of more chronic and severe cardiometabolic phenotypes such as CVD, there is clear need to be able to identify young adults with psychosis who are most at risk of future adverse cardiometabolic outcomes, such that the most intensive interventions can be directed in an informed way to attenuate the risk or even prevent those adverse outcomes from occurring.In this talk, Ben will first outline some recent advances in our understanding of the association between cardiometabolic and schizophrenia spectrum disorders. He will then introduce the field of cardiometabolic risk prediction, and highlight how existing tools developed for older general population adults are unlikely to be suitable for young people with psychosis. Finally, he will discuss the current state of play and the future of the Psychosis Metabolic Risk Calculator (PsyMetRiC), a novel clinically useful cardiometabolic risk prediction algorithm tailored for young people with psychosis, which has been developed and externally validated using data from three psychosis early intervention services in the UK.
NMC4 Short Talk: The complete connectome of an insect brain
Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.
Finding needles in the neural haystack: unsupervised analyses of noisy data
In modern neuroscience, we often want to extract information from recordings of many neurons in the brain. Unfortunately, the activity of individual neurons is very noisy, making it difficult to relate to cognition and behavior. Thankfully, we can use the correlations across time and neurons to denoise the data we record. In particular, using recent advances in machine learning, we can build models which harness this structure in the data to extract more interpretable signals. In this talk, we present two such methods as well as examples of how they can help us gain further insights into the neural underpinnings of behavior.
Mechanisms to medicines in neurodegeneration
Dysregulation of protein synthesis both globally and locally in neurons and astrocytes is a key feature of neurodegenerative diseases. Aberrant signalling through the Unfolded Protein Response (UPR) and related Integrated Stress Response (ISR) have become major targets for neuroprotection in these disorders. In addition, other homeostatic mechanisms and stress responses, including the cold shock response, appear to regulate local translation and RNA splicing to control synapse maintenance and regeneration and can also be targeted therapeutically for neuroprotection. We have defined the role of UPR/ISR and the cold-shock response in neurodegenerative disorders and have developed translational strategies targeting them for new treatments for dementia.
A transdiagnostic data-driven study of children’s behaviour and the functional connectome
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)
Networking—the key to success… especially in the brain
In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.
Keeping axons alive after injury: Inhibiting programmed axon death
Activation of pro-degenerative protein SARM1 in response to diverse physical and disease-relevant injuries triggers programmed axon death. Original studies indicated substantially decreased levels of SARM1 were required for neuroprotection. However, we demonstrate that lowering SARM1 levels by 50% in Sarm1 haploinsufficient mice delays axon degeneration in vivo (after sciatic nerve transection), in vitro (in response to diverse traumatic, neurotoxic, and genetic triggers), and partially prevents neurite outgrowth defects in mice lacking pro-survival factor NMNAT2. We also demonstrate the capacity for Sarm1 antisense oligonucleotides to decrease SARM1 levels by more than 50% which delays or prevents programmed axon degeneration in vitro. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injuries. These data demonstrate that axon protection occurs in a Sarm1 gene-dose responsive manner and that SARM1 lowering agents have therapeutic potential. Thus, antisense oligonucleotide targeting of Sarm1 is a promising therapeutic strategy against diverse triggers of axon degeneration.
Transdiagnostic approaches to understanding neurodevelopment
Macroscopic brain organisation emerges early in life, even prenatally, and continues to develop through adolescence and into early adulthood. The emergence and continual refinement of large-scale brain networks, connecting neuronal populations across anatomical distance, allows for increasing functional integration and specialisation. This process is thought crucial for the emergence of complex cognitive processes. But how and why is this process so diverse? We used structural neuroimaging collected from a large diverse cohort, to explore how different features of macroscopic brain organisation are associated with diverse cognitive trajectories. We used diffusion-weighted imaging (DWI) to construct whole-brain white-matter connectomes. A simulated attack on each child's connectome revealed that some brain networks were strongly organized around highly connected 'hubs'. The more children's brains were critically dependent on hubs, the better their cognitive skills. Conversely, having poorly integrated hubs was a very strong risk factor for cognitive and learning difficulties across the sample. We subsequently developed a computational framework, using generative network modelling (GNM), to model the emergence of this kind of connectome organisation. Relatively subtle changes within the wiring rules of this computational framework give rise to differential developmental trajectories, because of small biases in the preferential wiring properties of different nodes within the network. Finally, we were able to use this GNM to implicate the molecular and cellular processes that govern these different growth patterns.
The generation of cortical novelty responses through inhibitory plasticity
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
The brain control of appetite: Can an old dog teach us new tricks?
It is clear that the cause of obesity is a result of eating more than you burn. It is physics. What is more complex to answer is why some people eat more than others? Differences in our genetic make-up mean some of us are slightly more hungry all the time and so eat more than others. We now know that the genetics of body-weight, on which obesity sits on one end of the spectrum, is in actuality the genetics of appetite control. In contrast to the prevailing view, body-weight is not a choice. People who are obese are not bad or lazy; rather, they are fighting their biology.
A universal probabilistic spike count model reveals ongoing modulation of neural variability in head direction cell activity in mice
Neural responses are variable: even under identical experimental conditions, single neuron and population responses typically differ from trial to trial and across time. Recent work has demonstrated that this variability has predictable structure, can be modulated by sensory input and behaviour, and bears critical signatures of the underlying network dynamics and computations. However, current methods for characterising neural variability are primarily geared towards sensory coding in the laboratory: they require trials with repeatable experimental stimuli and behavioural covariates. In addition, they make strong assumptions about the parametric form of variability, rely on assumption-free but data-inefficient histogram-based approaches, or are altogether ill-suited for capturing variability modulation by covariates. Here we present a universal probabilistic spike count model that eliminates these shortcomings. Our method uses scalable Bayesian machine learning techniques to model arbitrary spike count distributions (SCDs) with flexible dependence on observed as well as latent covariates. Without requiring repeatable trials, it can flexibly capture covariate-dependent joint SCDs, and provide interpretable latent causes underlying the statistical dependencies between neurons. We apply the model to recordings from a canonical non-sensory neural population: head direction cells in the mouse. We find that variability in these cells defies a simple parametric relationship with mean spike count as assumed in standard models, its modulation by external covariates can be comparably strong to that of the mean firing rate, and slow low-dimensional latent factors explain away neural correlations. Our approach paves the way to understanding the mechanisms and computations underlying neural variability under naturalistic conditions, beyond the realm of sensory coding with repeatable stimuli.
In vitro bioelectronic models of the gut-brain axis
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut-brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome-gut-brain axis cross-talk relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. Organ-on-chip technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. In this talk I’ll discuss our progress towards generating a complete platform of the human microbiota-gut-brain axis with integrated monitoring and sensing capabilities. Bringing together principles of materials science, tissue engineering, 3D cell biology and bioelectronics, we are building advanced models of the GI and the BBB /NVU, with real-time and label-free monitoring units adapted in the model architecture, towards a robust and more physiologically relevant human in vitro model, aiming to i) elucidate the role of microbiota in the gut-brain axis communication, ii) to study how diet and impaired microbiota profiles affect various (patho-)physiologies, and iii) to test personalised medicine approaches for disease modelling and drug testing.
Reverse-Engineering the Cortical Architecture for Controlled Semantic Cognition
Activity dependent myelination: a mechanism for learning and regeneration?
The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.