Camouflage
camouflage
Visual Monitoring of Visual Appearance as a Feedback System in Dynamic Camouflage
The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules
Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.
A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina
To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.
Brain circuit dynamics in Action and Sleep
Our group focuses on brain computation, physiology and evolution, with a particular focus on network dynamics, sleep (evolution and mechanistic underpinnings), cortical computation (through the study of ancestral cortices), and sensorimotor processing. This talk will describe our recent results on the remarkable camouflage behavior of cuttlefish (action) and on brain activity in REM and NonREM in lizards (sleep). Both topics will focus on aspects of circuit dynamics.
Brain circuit dynamics in Action and Sleep
Our group focuses on brain computation, physiology and evolution, with a particular focus on network dynamics, sleep (evolution and mechanistic underpinnings), cortical computation (through the study of ancestral cortices), and sensorimotor processing. This talk will describe our recent results on the remarkable camouflage behavior of cuttlefish (action) and on brain activity in REM and NonREM in lizards (sleep). Both topics will focus on aspects of circuit dynamics.
Stereo vision in humans and insects
Stereopsis – deriving information about distance by comparing views from two eyes – is widespread in vertebrates but so far known in only class of invertebrates, the praying mantids. Understanding stereopsis which has evolved independently in such a different nervous system promises to shed light on the constraints governing any stereo system. Behavioral experiments indicate that insect stereopsis is functionally very different from that studied in vertebrates. Vertebrate stereopsis depends on matching up the pattern of contrast in the two eyes; it works in static scenes, and may have evolved in order to break camouflage rather than to detect distances. Insect stereopsis matches up regions of the image where the luminance is changing; it is insensitive to the detailed pattern of contrast and operates to detect the distance to a moving target. Work from my lab has revealed a network of neurons within the mantis brain which are tuned to binocular disparity, including some that project to early visual areas. This is in contrast to previous theories which postulated that disparity was computed only at a single, late stage, where visual information is passed down to motor neurons. Thus, despite their very different properties, the underlying neural mechanisms supporting vertebrate and insect stereopsis may be computationally more similar than has been assumed.
How our biases may influence our study of visual modalities: Two tales from the sea
It has long been appreciated (and celebrated) that certain species have sensory capabilities that humans do not share, for example polarization, ultraviolet, and infrared vision. What is less appreciated however, is that our position as terrestrial human scientists can significantly affect our study of animal senses and signals, even within modalities that we do share. For example, our acute vision can lead us to over-interpret the relevance of fine patterns in animals with coarser vision, and our Cartesian heritage as scientists can lead us to divide sensory modalities into orthogonal parameters (e.g. hue and brightness for color vision), even though this division may not exist within the animal itself. This talk examines two cases from marine visual ecology where a reconsideration of our biases as sharp-eyed Cartesian land mammals can help address questions in visual ecology. The first case examines the enormous variation in visual acuity among animals with image-forming eyes, and focuses on how acknowledging the typically poorer resolving power of animals can help us interpret the function of color patterns in cleaner shrimp and their client fish. The second case examines the how the typical human division of polarized light stimuli into angle and degree of polarization is problematic, and how a physiologically relevant interpretation is both closer to the truth and resolves a number of issues, particularly when considering the propagation of polarized light
Stereo vision and prey detection in the praying mantis
Praying mantises are the only insects known to have stereo vision. We used a comparative approach to determine how the mechanisms underlying stereopsis in mantises differ from those underlying primate stereo vision. By testing mantises with virtual 3D targets we showed that mantis stereopsis enables prey capture in complex scenes but the mechanisms underlying it differ from those underlying primate stereopsis. My talk will further discuss how stereopsis combines with second-order motion perception to enable the detection of camouflaged prey by mantises. The talk will highlight the benefits of a comparative approach towards understanding visual cognition.
Shape from shading in nature: does it provide optimal camouflage?
Representing cuttlefish camouflage patterns
COSYNE 2025